Bjarke Frost Nielsen , Christian Berrig , Bryan T. Grenfell , Viggo Andreasen
{"title":"One hundred years of influenza A evolution","authors":"Bjarke Frost Nielsen , Christian Berrig , Bryan T. Grenfell , Viggo Andreasen","doi":"10.1016/j.tpb.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>Leveraging the simplicity of nucleotide mismatch distributions, we provide an intuitive window into the evolution of the human influenza A ‘nonstructural’ (NS) gene segment. In an analysis suggested by the eminent Danish biologist Freddy B. Christiansen, we illustrate the existence of a continuous genetic “backbone” of influenza A NS sequences, steadily increasing in nucleotide distance to the 1918 root over more than a century. The 2009 influenza A/H1N1 pandemic represents a clear departure from this enduring genetic backbone. Utilizing nucleotide distance maps and phylogenetic analyses, we illustrate remaining uncertainties regarding the origin of the 2009 pandemic, highlighting the complexity of influenza evolution. The NS segment is interesting precisely because it experiences less pervasive positive selection, and departs less strongly from neutral evolution than e.g. the HA antigen. Consequently, sudden deviations from neutral diversification can indicate changes in other genes via the hitchhiking effect. Our approach employs two measures based on nucleotide mismatch counts to analyze the evolutionary dynamics of the NS gene segment. The <em>rooted Hamming map</em> of distances between a reference sequence and all other sequences over time, and the unrooted temporal Hamming distribution which captures the distribution of genotypic distances between simultaneously circulating viruses, thereby revealing patterns of nucleotide diversity and epi-evolutionary dynamics.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"159 ","pages":"Pages 25-34"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580924000807","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Leveraging the simplicity of nucleotide mismatch distributions, we provide an intuitive window into the evolution of the human influenza A ‘nonstructural’ (NS) gene segment. In an analysis suggested by the eminent Danish biologist Freddy B. Christiansen, we illustrate the existence of a continuous genetic “backbone” of influenza A NS sequences, steadily increasing in nucleotide distance to the 1918 root over more than a century. The 2009 influenza A/H1N1 pandemic represents a clear departure from this enduring genetic backbone. Utilizing nucleotide distance maps and phylogenetic analyses, we illustrate remaining uncertainties regarding the origin of the 2009 pandemic, highlighting the complexity of influenza evolution. The NS segment is interesting precisely because it experiences less pervasive positive selection, and departs less strongly from neutral evolution than e.g. the HA antigen. Consequently, sudden deviations from neutral diversification can indicate changes in other genes via the hitchhiking effect. Our approach employs two measures based on nucleotide mismatch counts to analyze the evolutionary dynamics of the NS gene segment. The rooted Hamming map of distances between a reference sequence and all other sequences over time, and the unrooted temporal Hamming distribution which captures the distribution of genotypic distances between simultaneously circulating viruses, thereby revealing patterns of nucleotide diversity and epi-evolutionary dynamics.
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.