{"title":"Anti-inflammatory and anti-apoptotic activity of synaptamide improves the morphological state of neurons in traumatic brain injury","authors":"","doi":"10.1016/j.neuropharm.2024.110094","DOIUrl":null,"url":null,"abstract":"<div><p>Traumatic brain injuries (TBI) of varying severity are becoming more frequent all over the world. The process of neuroinflammation, in which macrophages and microglia are key players, underlies all types of brain damage. The present study focuses on evaluating the therapeutic potential of N-docosahexaenoylethanolamine (DHEA, synaptamide), which is an endogenous metabolite of docosahexaenoic acid in traumatic brain injury. Previously, several <em>in vitro</em> and <em>in vivo</em> models have shown significant <em>anti</em>-neuroinflammatory and synaptogenic activity of synaptamide. The results of the present study show that synaptamide by subcutaneous administration (10 mg/kg/day, 7 days) exerts anti-inflammatory and anti-apoptotic effects in the thalamus and cerebral cortex of experimental animals (male C57BL/6 mice). Were analyzed the dynamics of changes in the activity of Iba-1- and CD68-positive microglia/macrophages, the level of production of pro-inflammatory cytokines (IL1β, IL6, TNFα) and pro-apoptotic proteins (Bad, Bax), the expression of pro- and anti-inflammatory markers (<em>CD68, CD206, arg-1</em>). ATF3 transcription factor distribution and neuronal state in the thalamus and cerebral cortex of animals with craniotomy, traumatic brain injury, and therapy are quantitatively assessed. The obtained data showed that synaptamide: (1) has no effect on the total pool of microglia/macrophages; (2) inhibits the activity of pro-inflammatory microglia/macrophages and cytokines they produce; (3) increases the expression of <em>CD206</em> but not <em>arg-1</em>; (4) has anti-apoptotic effect and (5) improves the morphological state of neurons. The results obtained confirm the high therapeutic potential of synaptamide in the therapy of traumatic brain injury.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390824002636","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Traumatic brain injuries (TBI) of varying severity are becoming more frequent all over the world. The process of neuroinflammation, in which macrophages and microglia are key players, underlies all types of brain damage. The present study focuses on evaluating the therapeutic potential of N-docosahexaenoylethanolamine (DHEA, synaptamide), which is an endogenous metabolite of docosahexaenoic acid in traumatic brain injury. Previously, several in vitro and in vivo models have shown significant anti-neuroinflammatory and synaptogenic activity of synaptamide. The results of the present study show that synaptamide by subcutaneous administration (10 mg/kg/day, 7 days) exerts anti-inflammatory and anti-apoptotic effects in the thalamus and cerebral cortex of experimental animals (male C57BL/6 mice). Were analyzed the dynamics of changes in the activity of Iba-1- and CD68-positive microglia/macrophages, the level of production of pro-inflammatory cytokines (IL1β, IL6, TNFα) and pro-apoptotic proteins (Bad, Bax), the expression of pro- and anti-inflammatory markers (CD68, CD206, arg-1). ATF3 transcription factor distribution and neuronal state in the thalamus and cerebral cortex of animals with craniotomy, traumatic brain injury, and therapy are quantitatively assessed. The obtained data showed that synaptamide: (1) has no effect on the total pool of microglia/macrophages; (2) inhibits the activity of pro-inflammatory microglia/macrophages and cytokines they produce; (3) increases the expression of CD206 but not arg-1; (4) has anti-apoptotic effect and (5) improves the morphological state of neurons. The results obtained confirm the high therapeutic potential of synaptamide in the therapy of traumatic brain injury.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).