{"title":"Mechanical Nociception Assay in <i>Drosophila</i> Larvae.","authors":"Stephanie E Mauthner, W Daniel Tracey","doi":"10.1101/pdb.prot108125","DOIUrl":null,"url":null,"abstract":"<p><p>The nervous system of animals can sense and respond to noxious stimuli, which include noxious thermal, chemical, or mechanical stimuli, through a process called nociception. Here, we describe a simple behavioral assay to measure mechanically induced nociceptive responses in <i>Drosophila</i> larvae. This assay tests larval mechanosensitivity to noxious force with calibrated von Frey filaments. First, we explain how to construct and calibrate the customizable von Frey filaments that can be used to deliver reproducible stimuli of a defined force or pressure. Next, we describe how to perform the mechanical nociception assay on third-instar larvae. Through comparison of the responses of genotypes of interest, this assay can be useful for investigation of molecular, cellular, and circuit mechanisms of mechanical nociception. At the molecular level, prior studies have identified the importance of sensory ion channels such as Pickpocket/Balboa, Piezo, dTRPA1, and Painless. At the cellular level, the class IV multidendritic arborizing (md-da) neurons are the main mechanical nociceptor neurons of the peripheral system, but class III and class II md-da have been found to also play a role. At the circuit level, studies have shown that mechanical nociception relies on interneurons of the abdominal ganglia that integrate inputs from these various md-da neuron classes.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot108125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The nervous system of animals can sense and respond to noxious stimuli, which include noxious thermal, chemical, or mechanical stimuli, through a process called nociception. Here, we describe a simple behavioral assay to measure mechanically induced nociceptive responses in Drosophila larvae. This assay tests larval mechanosensitivity to noxious force with calibrated von Frey filaments. First, we explain how to construct and calibrate the customizable von Frey filaments that can be used to deliver reproducible stimuli of a defined force or pressure. Next, we describe how to perform the mechanical nociception assay on third-instar larvae. Through comparison of the responses of genotypes of interest, this assay can be useful for investigation of molecular, cellular, and circuit mechanisms of mechanical nociception. At the molecular level, prior studies have identified the importance of sensory ion channels such as Pickpocket/Balboa, Piezo, dTRPA1, and Painless. At the cellular level, the class IV multidendritic arborizing (md-da) neurons are the main mechanical nociceptor neurons of the peripheral system, but class III and class II md-da have been found to also play a role. At the circuit level, studies have shown that mechanical nociception relies on interneurons of the abdominal ganglia that integrate inputs from these various md-da neuron classes.
Cold Spring Harbor protocolsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍:
Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.