Diverse Relationships between Batrachochytrium Infections and Antimicrobial Peptide Defenses Across Leopard Frog Populations.

IF 2.2 3区 生物学 Q1 ZOOLOGY
Emily H Le Sage, Laura K Reinert, Michel E B Ohmer, Brandon C LaBumbard, Karie A Altman, Laura A Brannelly, Ian Latella, Nina B McDonnell, Veronica Saenz, Jason C Walsman, Mark Q Wilber, Douglas C Woodhams, Jamie Voyles, Corinne L Richards-Zawacki, Louise A Rollins-Smith
{"title":"Diverse Relationships between Batrachochytrium Infections and Antimicrobial Peptide Defenses Across Leopard Frog Populations.","authors":"Emily H Le Sage, Laura K Reinert, Michel E B Ohmer, Brandon C LaBumbard, Karie A Altman, Laura A Brannelly, Ian Latella, Nina B McDonnell, Veronica Saenz, Jason C Walsman, Mark Q Wilber, Douglas C Woodhams, Jamie Voyles, Corinne L Richards-Zawacki, Louise A Rollins-Smith","doi":"10.1093/icb/icae130","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) play a fundamental role in the innate defense against microbial pathogens, as well as other immune and non-immune functions. Their role in amphibian skin defense against the pathogenic fungus Batrachochytrium dendrobatidis (Bd) is exemplified by experiments in which depletion of host's stored AMPs increases mortality from infection. Yet, the question remains whether there are generalizable patterns of negative or positive correlations between stored AMP defenses and the probability of infection or infection intensity across populations and species. This study aims to expand on prior field studies of AMP quantities and compositions by correlating stored defenses with an estimated risk of Bd exposure (prevalence and mean infection intensity in each survey) in five locations across the United States and a total of three species. In all locations, known AMPs correlated with the ability of recovered secretions to inhibit Bd in vitro. We found that stored AMP defenses were generally unrelated to Bd infection except in one location where the relative intensity of known AMPs was lower in secretions from infected frogs. In all other locations, known AMP relative intensities were higher in infected frogs. Stored peptide quantity was either positively or negatively correlated with Bd exposure risk. Thus, future experiments coupled with organismal modeling can elucidate whether Bd infection affects secretion/synthesis and will provide insight into how to interpret amphibian ecoimmunology studies of AMPs. We also demonstrate that future AMP isolating and sequencing studies can focus efforts by correlating mass spectrometry peaks to inhibitory capacity using linear decomposition modeling.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae130","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial peptides (AMPs) play a fundamental role in the innate defense against microbial pathogens, as well as other immune and non-immune functions. Their role in amphibian skin defense against the pathogenic fungus Batrachochytrium dendrobatidis (Bd) is exemplified by experiments in which depletion of host's stored AMPs increases mortality from infection. Yet, the question remains whether there are generalizable patterns of negative or positive correlations between stored AMP defenses and the probability of infection or infection intensity across populations and species. This study aims to expand on prior field studies of AMP quantities and compositions by correlating stored defenses with an estimated risk of Bd exposure (prevalence and mean infection intensity in each survey) in five locations across the United States and a total of three species. In all locations, known AMPs correlated with the ability of recovered secretions to inhibit Bd in vitro. We found that stored AMP defenses were generally unrelated to Bd infection except in one location where the relative intensity of known AMPs was lower in secretions from infected frogs. In all other locations, known AMP relative intensities were higher in infected frogs. Stored peptide quantity was either positively or negatively correlated with Bd exposure risk. Thus, future experiments coupled with organismal modeling can elucidate whether Bd infection affects secretion/synthesis and will provide insight into how to interpret amphibian ecoimmunology studies of AMPs. We also demonstrate that future AMP isolating and sequencing studies can focus efforts by correlating mass spectrometry peaks to inhibitory capacity using linear decomposition modeling.

豹蛙种群中蝙蝠恙虫感染与抗菌肽防御之间的不同关系
抗菌肽(AMPs)在抵御微生物病原体的先天防御以及其他免疫和非免疫功能中发挥着重要作用。实验表明,消耗宿主储存的 AMPs 会增加感染死亡率,这说明了 AMPs 在两栖动物皮肤防御病原真菌 Batrachochytrium dendrobatidis(Bd)方面的作用。然而,在不同种群和物种中,储存的 AMP 防御能力与感染概率或感染强度之间是否存在可推广的负相关或正相关模式,这个问题仍然存在。本研究的目的是扩大先前对 AMP 数量和组成的实地研究,在美国的五个地点和总共三个物种中,将储存的防御能力与估计的 Bd 感染风险(每次调查中的流行率和平均感染强度)相关联。在所有地点,已知的 AMP 与回收的分泌物在体外抑制 Bd 的能力相关。我们发现,储存的 AMP 防御能力一般与 Bd 感染无关,但有一个地方除外,在那里,受感染蛙类的分泌物中已知 AMP 的相对强度较低。在所有其他地方,受感染蛙体内已知 AMP 的相对强度都较高。储存的多肽数量与接触 Bd 的风险呈正相关或负相关。因此,未来的实验加上生物体模型可以阐明Bd感染是否会影响分泌/合成,并为如何解释两栖动物AMP生态免疫学研究提供启示。我们还证明,未来的 AMP 分离和测序研究可以利用线性分解模型将质谱峰值与抑制能力相关联,从而集中力量进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信