The anthraquinone derivative KA-4s reduces energy metabolism and enhances the sensitivity of ovarian cancer cells to cisplatin.

IF 3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Carcinogenesis Pub Date : 2024-11-01 Epub Date: 2024-08-02 DOI:10.1002/mc.23795
Yingdan Zhao, Xinxiao Li, Shumei Xu, Yingying Yang, Qiangjian Chen, Junying Li, Wei Tian, Qiuping Zhang, Huaxin Hou, Danrong Li
{"title":"The anthraquinone derivative KA-4s reduces energy metabolism and enhances the sensitivity of ovarian cancer cells to cisplatin.","authors":"Yingdan Zhao, Xinxiao Li, Shumei Xu, Yingying Yang, Qiangjian Chen, Junying Li, Wei Tian, Qiuping Zhang, Huaxin Hou, Danrong Li","doi":"10.1002/mc.23795","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer is the leading cause of death from female gynecological cancers. Cisplatin (DDP) is a first-line drug for ovarian cancer treatment. Due to DDP resistance, there is an urgent need for novel therapeutic drugs with improved antitumor activity. AMPK-mediated metabolic regulatory pathways are related to tumor drug resistance. Our study aimed to determine the relationship between reversing DDP resistance with the anthraquinone derivative KA-4s and regulating AMPK energy metabolism in ovarian cancer. The results showed that KA-4s inhibited the proliferation of ovarian cancer cells. The combination of KA-4s with DDP effectively promoted drug-resistant ovarian cancer cell apoptosis and inhibited cell migration and invasion. Moreover, KA-4s decreased the intracellular ATP level and increased the calcium ion level, leading to AMPK phosphorylation. Further studies suggested that the AMPK signaling pathway may be involved in the mechanism through which KA-4s reduce drug resistance. KA-4s inhibited mitochondrial respiration and glycolysis; downregulated the glucose metabolism-related proteins GLUT1 and GLUT4; the lipid metabolism-related proteins SREBP1 and SCD1; and the drug resistance-related proteins P-gp, MRP1, and LRP. The inhibitory effect of KA-4s on GLUT1 was confirmed by the application of the GLUT1 inhibitor BAY-876. KA-4s combined with DDP significantly increased the expression of p-AMPK and reduced the expression of P-gp. In a xenograft model of ovarian cancer, treatment with KA-4s combined with DDP reduced energy metabolism and drug resistance, inducing tumor apoptosis. Consequently, KA-4s might be evaluated as a new agent for enhancing the chemotherapeutic efficacy of treatment for ovarian cancer.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"2090-2102"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23795","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ovarian cancer is the leading cause of death from female gynecological cancers. Cisplatin (DDP) is a first-line drug for ovarian cancer treatment. Due to DDP resistance, there is an urgent need for novel therapeutic drugs with improved antitumor activity. AMPK-mediated metabolic regulatory pathways are related to tumor drug resistance. Our study aimed to determine the relationship between reversing DDP resistance with the anthraquinone derivative KA-4s and regulating AMPK energy metabolism in ovarian cancer. The results showed that KA-4s inhibited the proliferation of ovarian cancer cells. The combination of KA-4s with DDP effectively promoted drug-resistant ovarian cancer cell apoptosis and inhibited cell migration and invasion. Moreover, KA-4s decreased the intracellular ATP level and increased the calcium ion level, leading to AMPK phosphorylation. Further studies suggested that the AMPK signaling pathway may be involved in the mechanism through which KA-4s reduce drug resistance. KA-4s inhibited mitochondrial respiration and glycolysis; downregulated the glucose metabolism-related proteins GLUT1 and GLUT4; the lipid metabolism-related proteins SREBP1 and SCD1; and the drug resistance-related proteins P-gp, MRP1, and LRP. The inhibitory effect of KA-4s on GLUT1 was confirmed by the application of the GLUT1 inhibitor BAY-876. KA-4s combined with DDP significantly increased the expression of p-AMPK and reduced the expression of P-gp. In a xenograft model of ovarian cancer, treatment with KA-4s combined with DDP reduced energy metabolism and drug resistance, inducing tumor apoptosis. Consequently, KA-4s might be evaluated as a new agent for enhancing the chemotherapeutic efficacy of treatment for ovarian cancer.

蒽醌衍生物 KA-4s 可降低能量代谢,增强卵巢癌细胞对顺铂的敏感性。
卵巢癌是导致女性妇科癌症死亡的主要原因。顺铂(DDP)是治疗卵巢癌的一线药物。由于存在 DDP 耐药性,因此迫切需要抗肿瘤活性更强的新型治疗药物。AMPK 介导的代谢调节途径与肿瘤耐药性有关。我们的研究旨在确定蒽醌衍生物KA-4s逆转卵巢癌DDP耐药性与调节AMPK能量代谢之间的关系。结果显示,KA-4s能抑制卵巢癌细胞的增殖。KA-4s与DDP联用可有效促进耐药卵巢癌细胞凋亡,抑制细胞迁移和侵袭。此外,KA-4s 还能降低细胞内 ATP 水平,提高钙离子水平,从而导致 AMPK 磷酸化。进一步的研究表明,AMPK 信号通路可能参与了 KA-4s 降低耐药性的机制。KA-4s 可抑制线粒体呼吸和糖酵解;下调葡萄糖代谢相关蛋白 GLUT1 和 GLUT4;脂质代谢相关蛋白 SREBP1 和 SCD1;以及耐药性相关蛋白 P-gp、MRP1 和 LRP。应用 GLUT1 抑制剂 BAY-876 证实了 KA-4s 对 GLUT1 的抑制作用。KA-4s 与 DDP 联用可显著增加 p-AMPK 的表达,降低 P-gp 的表达。在卵巢癌异种移植模型中,KA-4s 与 DDP 联合治疗可降低能量代谢和耐药性,诱导肿瘤凋亡。因此,KA-4s 可被评估为一种提高卵巢癌化疗疗效的新药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Carcinogenesis
Molecular Carcinogenesis 医学-生化与分子生物学
CiteScore
7.30
自引率
2.20%
发文量
112
审稿时长
2 months
期刊介绍: Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信