Sarveenah Chandrasegaran, Jack W Klose, Tara L Pukala
{"title":"Unraveling DNA Triplex Assembly: Mass Spectrometric Investigation of Modified Triplex Forming Oligonucleotides for Enhanced Gene Targeting.","authors":"Sarveenah Chandrasegaran, Jack W Klose, Tara L Pukala","doi":"10.1021/jasms.4c00070","DOIUrl":null,"url":null,"abstract":"<p><p>Deoxyribonucleic acid triplexes have potential roles in a range of biological processes involving gene and transcriptional regulation. A major challenge in exploiting the formation of these higher-order structures to target genes <i>in vivo</i> is their low stability, which is dependent on many factors including the length and composition of bases in the sequence. Here, different DNA base modifications have been explored, primarily using native mass spectrometry, in efforts to enable stronger binding between the triplex forming oligonucleotide (TFO) and duplex target sites. These modifications can also be used to overcome pyrimidine interruptions in the duplex sequence in promoter regions of genomes, to expand triplex target sequences for antigene therapies. Using model sequences with a single pyrimidine interruption, triplex forming oligonucleotides containing locked nucleic acid base modifications were shown to have a higher triplex binding propensity than DNA-only and dSpacer-containing TFOs. However, the triplex forming ability of these systems was limited by the competitive formation of multiple higher order assemblies. Triplex forming sequences that correspond to specific gene targets from the <i>Pseudomonas aeruginosa</i> genome were also investigated, with LNA-containing TFOs the only variant able to form triplex using these sequences. This work indicates the advantages of utilizing synthetically modified TFOs to form triplex assemblies <i>in vivo</i> for potential therapeutic applications and highlights the advantages of native mass spectrometry for the study of their formation.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00070","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Deoxyribonucleic acid triplexes have potential roles in a range of biological processes involving gene and transcriptional regulation. A major challenge in exploiting the formation of these higher-order structures to target genes in vivo is their low stability, which is dependent on many factors including the length and composition of bases in the sequence. Here, different DNA base modifications have been explored, primarily using native mass spectrometry, in efforts to enable stronger binding between the triplex forming oligonucleotide (TFO) and duplex target sites. These modifications can also be used to overcome pyrimidine interruptions in the duplex sequence in promoter regions of genomes, to expand triplex target sequences for antigene therapies. Using model sequences with a single pyrimidine interruption, triplex forming oligonucleotides containing locked nucleic acid base modifications were shown to have a higher triplex binding propensity than DNA-only and dSpacer-containing TFOs. However, the triplex forming ability of these systems was limited by the competitive formation of multiple higher order assemblies. Triplex forming sequences that correspond to specific gene targets from the Pseudomonas aeruginosa genome were also investigated, with LNA-containing TFOs the only variant able to form triplex using these sequences. This work indicates the advantages of utilizing synthetically modified TFOs to form triplex assemblies in vivo for potential therapeutic applications and highlights the advantages of native mass spectrometry for the study of their formation.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives