Aurora Callahan, Xien Yu Chua, Alijah A Griffith, Tobias Hildebrandt, Guoping Fu, Mengzhou Hu, Renren Wen, Arthur R Salomon
{"title":"Deep phosphotyrosine characterisation of primary murine T cells using broad spectrum optimisation of selective triggering.","authors":"Aurora Callahan, Xien Yu Chua, Alijah A Griffith, Tobias Hildebrandt, Guoping Fu, Mengzhou Hu, Renren Wen, Arthur R Salomon","doi":"10.1002/pmic.202400106","DOIUrl":null,"url":null,"abstract":"<p><p>Sequencing the tyrosine phosphoproteome using MS-based proteomics is challenging due to the low abundance of tyrosine phosphorylation in cells, a challenge compounded in scarce samples like primary cells or clinical samples. The broad-spectrum optimisation of selective triggering (BOOST) method was recently developed to increase phosphotyrosine sequencing in low protein input samples by leveraging tandem mass tags (TMT), phosphotyrosine enrichment, and a phosphotyrosine-loaded carrier channel. Here, we demonstrate the viability of BOOST in T cell receptor (TCR)-stimulated primary murine T cells by benchmarking the accuracy and precision of the BOOST method and discerning significant alterations in the phosphoproteome associated with receptor stimulation. Using 1 mg of protein input (about 20 million cells) and BOOST, we identify and precisely quantify more than 2000 unique pY sites compared to about 300 unique pY sites in non-BOOST control samples. We show that although replicate variation increases when using the BOOST method, BOOST does not jeopardise quantitative precision or the ability to determine statistical significance for peptides measured in triplicate. Many pY previously uncharacterised sites on important T cell signalling proteins are quantified using BOOST, and we identify new TCR responsive pY sites observable only with BOOST. Finally, we determine that the phase-spectrum deconvolution method on Orbitrap instruments can impair pY quantitation in BOOST experiments.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400106","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Sequencing the tyrosine phosphoproteome using MS-based proteomics is challenging due to the low abundance of tyrosine phosphorylation in cells, a challenge compounded in scarce samples like primary cells or clinical samples. The broad-spectrum optimisation of selective triggering (BOOST) method was recently developed to increase phosphotyrosine sequencing in low protein input samples by leveraging tandem mass tags (TMT), phosphotyrosine enrichment, and a phosphotyrosine-loaded carrier channel. Here, we demonstrate the viability of BOOST in T cell receptor (TCR)-stimulated primary murine T cells by benchmarking the accuracy and precision of the BOOST method and discerning significant alterations in the phosphoproteome associated with receptor stimulation. Using 1 mg of protein input (about 20 million cells) and BOOST, we identify and precisely quantify more than 2000 unique pY sites compared to about 300 unique pY sites in non-BOOST control samples. We show that although replicate variation increases when using the BOOST method, BOOST does not jeopardise quantitative precision or the ability to determine statistical significance for peptides measured in triplicate. Many pY previously uncharacterised sites on important T cell signalling proteins are quantified using BOOST, and we identify new TCR responsive pY sites observable only with BOOST. Finally, we determine that the phase-spectrum deconvolution method on Orbitrap instruments can impair pY quantitation in BOOST experiments.
期刊介绍:
PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.