Localized stem structures in quasi-resonant two-soliton solutions for the asymmetric Nizhnik-Novikov-Veselov system

Feng Yuan, Jiguang Rao, Jingsong He, Yi Cheng
{"title":"Localized stem structures in quasi-resonant two-soliton solutions for the asymmetric Nizhnik-Novikov-Veselov system","authors":"Feng Yuan, Jiguang Rao, Jingsong He, Yi Cheng","doi":"arxiv-2407.20875","DOIUrl":null,"url":null,"abstract":"Elastic collisions of solitons generally have a finite phase shift. When the\nphase shift has a finitely large value, the two vertices of the\n(2+1)-dimensional 2-soliton are significantly separated due to the phase shift,\naccompanied by the formation of a local structure connecting the two V-shaped\nsolitons. We define this local structure as the stem structure. This study\nsystematically investigates the localized stem structures between two solitons\nin the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov system. These stem\nstructures, arising from quasi-resonant collisions between the solitons,\nexhibit distinct features of spatial locality and temporal invariance. We\nexplore two scenarios: one characterized by weakly quasi-resonant collisions\n(i.e. $a_{12}\\approx 0$), and the other by strongly quasi-resonant collisions\n(i.e. $a_{12}\\approx +\\infty$). Through mathematical analysis, we extract\ncomprehensive insights into the trajectories, amplitudes, and velocities of the\nsoliton arms. Furthermore, we discuss the characteristics of the stem\nstructures, including their length and extreme points. Our findings shed new\nlight on the interaction between solitons in the (2+1)-dimensional asymmetric\nNizhnik-Novikov-Veselov system.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Elastic collisions of solitons generally have a finite phase shift. When the phase shift has a finitely large value, the two vertices of the (2+1)-dimensional 2-soliton are significantly separated due to the phase shift, accompanied by the formation of a local structure connecting the two V-shaped solitons. We define this local structure as the stem structure. This study systematically investigates the localized stem structures between two solitons in the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov system. These stem structures, arising from quasi-resonant collisions between the solitons, exhibit distinct features of spatial locality and temporal invariance. We explore two scenarios: one characterized by weakly quasi-resonant collisions (i.e. $a_{12}\approx 0$), and the other by strongly quasi-resonant collisions (i.e. $a_{12}\approx +\infty$). Through mathematical analysis, we extract comprehensive insights into the trajectories, amplitudes, and velocities of the soliton arms. Furthermore, we discuss the characteristics of the stem structures, including their length and extreme points. Our findings shed new light on the interaction between solitons in the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov system.
不对称 Nizhnik-Novikov-Veselov 系统准共振双孑子解中的局部茎结构
孤子的弹性碰撞一般具有有限的相移。当相移值无限大时,(2+1)维 2 孤子的两个顶点会因相移而明显分离,同时形成连接两个 V 形孤子的局部结构。我们将这种局部结构定义为茎结构。本研究系统地研究了 (2+1)-dimensional 不对称 Nizhnik-Novikov-Veselov 系统中两个孤子之间的局部茎结构。这些茎结构产生于孤立子之间的准共振碰撞,表现出空间局部性和时间不变性的明显特征。我们探讨了两种情况:一种是弱准共振碰撞(即 $a_{12}\approx 0$),另一种是强准共振碰撞(即 $a_{12}\approx +\infty$)。通过数学分析,我们提取了关于烁烁子臂的轨迹、振幅和速度的全面见解。此外,我们还讨论了茎结构的特征,包括其长度和极值点。我们的发现为(2+1)维非对称尼日尼克-诺维科夫-韦斯洛夫系统中孤子间的相互作用提供了新的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信