P. Mohan Babu, M. Saravanan, S. Krishnakumar, S. R. Sachin
{"title":"Explicit Dynamic Analysis of Multilayer Sheet Metal Forming – A Simulatory Analysis","authors":"P. Mohan Babu, M. Saravanan, S. Krishnakumar, S. R. Sachin","doi":"10.1007/s11223-024-00657-1","DOIUrl":null,"url":null,"abstract":"<p>The formation of sheet metal products is now widely utilized for multi-purposes in the automotive, aerospace and in industrial sectors. In this study, the phenomenon of plastic strain, von Mises stress, shear train by the V-bending method and to analyze the results theoretically, by using a special program called ANSYS. The multi-layer sheet metal in the rectangular plate of Al and Cu with three different thicknesses (1.0, 1.25, and 1.5 mm) is carried out by the Explicit solver. These parameters have been investigated such as effect sheet setting condition (Al/Cu/Al and Cu/Al/Cu), sheet thickness, and traveling of punch. In the explicit analysis, the position of Al/Cu/Al achieved maximum plastic strain in maximum thickness and punch travel is improved to save computation duration at cost of solution accuracy. Also, maximum shear stress obtained in larger punch travel in position Al/Cu/Al than Cu/Al/Cu. As the thickness is increased, the shear stress and von Mises stress becomes increases in Al/Cu/Al, and position of Cu/Al/Cu produced decreasing shear stress and von Mises stress in increasing sheet thickness with different punch travel.</p>","PeriodicalId":22007,"journal":{"name":"Strength of Materials","volume":"174 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11223-024-00657-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of sheet metal products is now widely utilized for multi-purposes in the automotive, aerospace and in industrial sectors. In this study, the phenomenon of plastic strain, von Mises stress, shear train by the V-bending method and to analyze the results theoretically, by using a special program called ANSYS. The multi-layer sheet metal in the rectangular plate of Al and Cu with three different thicknesses (1.0, 1.25, and 1.5 mm) is carried out by the Explicit solver. These parameters have been investigated such as effect sheet setting condition (Al/Cu/Al and Cu/Al/Cu), sheet thickness, and traveling of punch. In the explicit analysis, the position of Al/Cu/Al achieved maximum plastic strain in maximum thickness and punch travel is improved to save computation duration at cost of solution accuracy. Also, maximum shear stress obtained in larger punch travel in position Al/Cu/Al than Cu/Al/Cu. As the thickness is increased, the shear stress and von Mises stress becomes increases in Al/Cu/Al, and position of Cu/Al/Cu produced decreasing shear stress and von Mises stress in increasing sheet thickness with different punch travel.
期刊介绍:
Strength of Materials focuses on the strength of materials and structural components subjected to different types of force and thermal loadings, the limiting strength criteria of structures, and the theory of strength of structures. Consideration is given to actual operating conditions, problems of crack resistance and theories of failure, the theory of oscillations of real mechanical systems, and calculations of the stress-strain state of structural components.