{"title":"Winding Number Features for Vector Sketch Colorization","authors":"Daniel Scrivener, Ellis Coldren, Edward Chien","doi":"10.1111/cgf.15141","DOIUrl":null,"url":null,"abstract":"<p>Vector sketch software (e.g. Adobe Illustrator, Inkscape) and touch-interactive technologies have long aided artists in the creation of resolution-independent digital drawings that mimic the unconstrained nature of freehand sketches. However, artist intent behind stroke topology is often ambiguous, complicating traditional segmentation tasks such as coloring. For inspiration, we turn to the winding number, a classic geometric property of interest for binary segmentation in the presence of boundary data. Its direct application for multi-region segmentation poses two main challenges: (1) strokes may not be consistently oriented to best identify perceptually salient regions; (2) for interior strokes there is no “correct” orientation, as either choice better distinguishes one of two neighboring regions. Thus, we form a harmonic feature space from multiple winding number fields and perform segmentation via Voronoi/power diagrams in this domain. Our perspective allows both for automatic fill region detection and for a semi-automatic framework that naturally incorporates user hints and interactive sculpting of results, unlike competing automatic methods. Our method is agnostic to curve orientation and gracefully handles varying gap sizes in the sketch boundary, outperforming state-of-the-art colorization methods on these “gappy” inputs. Moreover, it inherits the ability of winding numbers to specify “fuzzy” boundaries, leading to simple strategies for color diffusion and single-parameter-driven growing and shrinking of regions.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15141","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Vector sketch software (e.g. Adobe Illustrator, Inkscape) and touch-interactive technologies have long aided artists in the creation of resolution-independent digital drawings that mimic the unconstrained nature of freehand sketches. However, artist intent behind stroke topology is often ambiguous, complicating traditional segmentation tasks such as coloring. For inspiration, we turn to the winding number, a classic geometric property of interest for binary segmentation in the presence of boundary data. Its direct application for multi-region segmentation poses two main challenges: (1) strokes may not be consistently oriented to best identify perceptually salient regions; (2) for interior strokes there is no “correct” orientation, as either choice better distinguishes one of two neighboring regions. Thus, we form a harmonic feature space from multiple winding number fields and perform segmentation via Voronoi/power diagrams in this domain. Our perspective allows both for automatic fill region detection and for a semi-automatic framework that naturally incorporates user hints and interactive sculpting of results, unlike competing automatic methods. Our method is agnostic to curve orientation and gracefully handles varying gap sizes in the sketch boundary, outperforming state-of-the-art colorization methods on these “gappy” inputs. Moreover, it inherits the ability of winding numbers to specify “fuzzy” boundaries, leading to simple strategies for color diffusion and single-parameter-driven growing and shrinking of regions.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.