Coexistence of Cycles of a Continuous Map of the Real Line Into Itself

Pub Date : 2024-07-30 DOI:10.1007/s11253-024-02303-0
Oleksandr Sharkovsky
{"title":"Coexistence of Cycles of a Continuous Map of the Real Line Into Itself","authors":"Oleksandr Sharkovsky","doi":"10.1007/s11253-024-02303-0","DOIUrl":null,"url":null,"abstract":"<p>Our main result can be formulated as follows: Consider the set of natural numbers in which the following relation is introduced: <i>n</i><sub>1</sub> precedes <i>n</i><sub>2</sub> (<i>n</i><sub>1</sub> ⪯ <i>n</i><sub>2</sub>) if, for any continuous map of the real line into itself, the existence of a cycle of order <i>n</i><sub>2</sub> follows from the existence of a cycle of order <i>n</i><sub>1</sub>. The following theorem is true:</p><p><b>Theorem.</b> <i>The introduced relation turns the set of natural numbers into an ordered set with the following ordering:</i>\n</p><span>$$3\\prec 5\\prec 7\\prec 9\\prec 11\\prec \\dots \\prec 3\\bullet 2\\prec 5\\bullet 2\\prec \\dots \\prec 3\\bullet {2}^{2}\\prec 5\\bullet {2}^{2}\\prec \\dots \\prec {2}^{3}\\prec {2}^{2}\\prec 2\\prec 1.$$</span>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02303-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our main result can be formulated as follows: Consider the set of natural numbers in which the following relation is introduced: n1 precedes n2 (n1n2) if, for any continuous map of the real line into itself, the existence of a cycle of order n2 follows from the existence of a cycle of order n1. The following theorem is true:

Theorem. The introduced relation turns the set of natural numbers into an ordered set with the following ordering:

$$3\prec 5\prec 7\prec 9\prec 11\prec \dots \prec 3\bullet 2\prec 5\bullet 2\prec \dots \prec 3\bullet {2}^{2}\prec 5\bullet {2}^{2}\prec \dots \prec {2}^{3}\prec {2}^{2}\prec 2\prec 1.$$
分享
查看原文
实线连续映射自身的循环共存
我们的主要结果可以表述如下:考虑自然数集,在自然数集中引入以下关系:如果对于实线到实线本身的任何连续映射,阶 n2 的循环的存在源于阶 n1 的循环的存在,则 n1 先于 n2 (n1 ⪯ n2)。下面的定理是真的:定理。引入的关系把自然数集变成了一个有序集,其排序如下:3}^{2} 5}^{2} 5}^{2} 5}^{2} /点 {2}^{2} /点 {2}^{3} /点 {2}^{2} 2$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信