Numerical Bifurcation of a Delayed Diffusive Hematopoiesis Model with Dirichlet Boundary Conditions

Pub Date : 2024-07-30 DOI:10.1007/s11253-024-02314-x
Xueyang Liu, Qi Wang
{"title":"Numerical Bifurcation of a Delayed Diffusive Hematopoiesis Model with Dirichlet Boundary Conditions","authors":"Xueyang Liu, Qi Wang","doi":"10.1007/s11253-024-02314-x","DOIUrl":null,"url":null,"abstract":"<p>Numerical bifurcation of a delayed diffusive hematopoiesis model with Dirichlet boundary condition is studied by using a nonstandard finite-difference scheme. We prove that a series of numerical Neimark– Sacker bifurcations appears at the positive equilibrium as the time delay increases. At the same time, the parameter conditions for the existence of numerical Neimark–Sacker bifurcations at the point of positive equilibrium are presented. Finally, we present several examples to verify the accuracy of the accumulated results.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02314-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical bifurcation of a delayed diffusive hematopoiesis model with Dirichlet boundary condition is studied by using a nonstandard finite-difference scheme. We prove that a series of numerical Neimark– Sacker bifurcations appears at the positive equilibrium as the time delay increases. At the same time, the parameter conditions for the existence of numerical Neimark–Sacker bifurcations at the point of positive equilibrium are presented. Finally, we present several examples to verify the accuracy of the accumulated results.

分享
查看原文
带 Dirichlet 边界条件的延迟扩散造血模型的数值分叉
通过使用非标准有限差分方案,研究了具有 Dirichlet 边界条件的延迟扩散造血模型的数值分岔。我们证明,随着时间延迟的增加,一系列数值 Neimark- Sacker 分岔出现在正平衡处。同时,我们还提出了在正平衡点存在数值 Neimark-Sacker 分岔的参数条件。最后,我们列举了几个实例来验证累积结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信