Deep Learning for Options Trading: An End-To-End Approach

Wee Ling Tan, Stephen Roberts, Stefan Zohren
{"title":"Deep Learning for Options Trading: An End-To-End Approach","authors":"Wee Ling Tan, Stephen Roberts, Stefan Zohren","doi":"arxiv-2407.21791","DOIUrl":null,"url":null,"abstract":"We introduce a novel approach to options trading strategies using a highly\nscalable and data-driven machine learning algorithm. In contrast to traditional\napproaches that often require specifications of underlying market dynamics or\nassumptions on an option pricing model, our models depart fundamentally from\nthe need for these prerequisites, directly learning non-trivial mappings from\nmarket data to optimal trading signals. Backtesting on more than a decade of\noption contracts for equities listed on the S&P 100, we demonstrate that deep\nlearning models trained according to our end-to-end approach exhibit\nsignificant improvements in risk-adjusted performance over existing rules-based\ntrading strategies. We find that incorporating turnover regularization into the\nmodels leads to further performance enhancements at prohibitively high levels\nof transaction costs.","PeriodicalId":501478,"journal":{"name":"arXiv - QuantFin - Trading and Market Microstructure","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Trading and Market Microstructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a novel approach to options trading strategies using a highly scalable and data-driven machine learning algorithm. In contrast to traditional approaches that often require specifications of underlying market dynamics or assumptions on an option pricing model, our models depart fundamentally from the need for these prerequisites, directly learning non-trivial mappings from market data to optimal trading signals. Backtesting on more than a decade of option contracts for equities listed on the S&P 100, we demonstrate that deep learning models trained according to our end-to-end approach exhibit significant improvements in risk-adjusted performance over existing rules-based trading strategies. We find that incorporating turnover regularization into the models leads to further performance enhancements at prohibitively high levels of transaction costs.
期权交易的深度学习:端到端方法
我们介绍了一种利用高度可扩展和数据驱动的机器学习算法来制定期权交易策略的新方法。传统的方法往往需要对基础市场动态或期权定价模型的假设进行规范,而我们的模型从根本上摆脱了对这些先决条件的需求,直接学习从市场数据到最优交易信号的非难映射。通过对标准普尔 100 指数(S&P 100)上市股票十多年的期权合约进行回溯测试,我们证明,与现有的基于规则的交易策略相比,根据我们的端到端方法训练的深度学习模型在风险调整后的性能方面有显著提高。我们发现,在模型中加入成交量正则化,可以在交易成本过高的情况下进一步提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信