A sharp lower bound on the small eigenvalues of surfaces

Renan Gross, Guy Lachman, Asaf Nachmias
{"title":"A sharp lower bound on the small eigenvalues of surfaces","authors":"Renan Gross, Guy Lachman, Asaf Nachmias","doi":"arxiv-2407.21780","DOIUrl":null,"url":null,"abstract":"Let $S$ be a compact hyperbolic surface of genus $g\\geq 2$ and let $I(S) =\n\\frac{1}{\\mathrm{Vol}(S)}\\int_{S} \\frac{1}{\\mathrm{Inj}(x)^2 \\wedge 1} dx$,\nwhere $\\mathrm{Inj}(x)$ is the injectivity radius at $x$. We prove that for any\n$k\\in \\{1,\\ldots, 2g-3\\}$, the $k$-th eigenvalue $\\lambda_k$ of the Laplacian\nsatisfies \\begin{equation*} \\lambda_k \\geq \\frac{c k^2}{I(S) g^2} \\, , \\end{equation*} where $c>0$ is\nsome universal constant. We use this bound to prove the heat kernel estimate\n\\begin{equation*} \\frac{1}{\\mathrm{Vol}(S)} \\int_S \\Big| p_t(x,x) -\\frac{1}{\\mathrm{Vol}(S)}\n\\Big | ~dx \\leq C \\sqrt{ \\frac{I(S)}{t}} \\qquad \\forall t \\geq 1 \\, ,\n\\end{equation*} where $C<\\infty$ is some universal constant. These bounds are\noptimal in the sense that for every $g\\geq 2$ there exists a compact hyperbolic\nsurface of genus $g$ satisfying the reverse inequalities with different\nconstants.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $S$ be a compact hyperbolic surface of genus $g\geq 2$ and let $I(S) = \frac{1}{\mathrm{Vol}(S)}\int_{S} \frac{1}{\mathrm{Inj}(x)^2 \wedge 1} dx$, where $\mathrm{Inj}(x)$ is the injectivity radius at $x$. We prove that for any $k\in \{1,\ldots, 2g-3\}$, the $k$-th eigenvalue $\lambda_k$ of the Laplacian satisfies \begin{equation*} \lambda_k \geq \frac{c k^2}{I(S) g^2} \, , \end{equation*} where $c>0$ is some universal constant. We use this bound to prove the heat kernel estimate \begin{equation*} \frac{1}{\mathrm{Vol}(S)} \int_S \Big| p_t(x,x) -\frac{1}{\mathrm{Vol}(S)} \Big | ~dx \leq C \sqrt{ \frac{I(S)}{t}} \qquad \forall t \geq 1 \, , \end{equation*} where $C<\infty$ is some universal constant. These bounds are optimal in the sense that for every $g\geq 2$ there exists a compact hyperbolic surface of genus $g$ satisfying the reverse inequalities with different constants.
曲面小特征值的尖锐下限
让 $S$ 是一个紧凑的双曲面,其属为 $g\geq 2$,让 $I(S) =\frac{1}{\mathrm{Vol}(S)}\int_{S} \frac{1}{\mathrm{Inj}(x)^2 \wedge 1} dx$,其中 $\mathrm{Inj}(x)$ 是在 $x$ 处的注入半径。我们证明,对于任意 $k\in \{1,\ldots, 2g-3\}$,拉普拉斯的 $k$-th 特征值 $\lambda_k$ 满足 \begin{equation*}\lambda_k \geq \frac{c k^2}{I(S) g^2}\, , \end{equation*} 其中 $c>0$ 是某个普遍常数。我们用这个约束来证明热核估计(begin{equation*}\frac{1}{mathrm{Vol}(S)} \int_S \Big| p_t(x,x) -\frac{1}{mathrm{Vol}(S)}\Big| ~dx \leq C \sqrt{\frac{I(S)}{t}}\qquad \forall t \geq 1 \, ,\end{equation*} 其中 $C<\infty$ 是某个通用常数。这些边界是最优的,因为对于每一个 $g\geq 2$,都存在一个属$g$的紧凑超曲面,满足不同常数的反向不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信