Bernardo Tormos, Benjamín Pla, Pau Bares, Douglas Pinto
{"title":"A multi-objective energy management optimization for a hybrid electric bus covering an urban route","authors":"Bernardo Tormos, Benjamín Pla, Pau Bares, Douglas Pinto","doi":"10.1177/09544070241265773","DOIUrl":null,"url":null,"abstract":"The development of electrified vehicles is a promising step toward energy savings, emissions reduction, environmental protection, and more sustainable economic growth. In the case of hybrid electric vehicles (HEVs), the energy management strategy (EMS) is essential for their efficiency and energy consumption. Typically, EMS employs rule-based strategies calibrated to general driving conditions. So, this paper proposes to calibrate the EMS of an urban hybrid electric bus that covers a particular route by taking advantage of past driving information. The EMS computes the percentage of the vehicle power demand that must be supplied by each of the sources (fuel and battery) and also controls the heating, ventilating and air conditioning (HVAC) system to achieve cabin thermal comfort. The proposed approach is based on employing an optimal solution by dynamic programing in a previous loop covered by the bus in the considered route. Then, the cost-to-go matrix is stored and used in the following trips by applying the one-step look-ahead rollout, taking profit from the similarities of the loops in the route. To compare and evaluate the performance of the proposed algorithm, a benchmark was carried out by employing the widespread equivalent consumption minimization strategy (ECMS) approach, combined with rule-based strategies in the HVAC control system. Finally, the pareto front presents the trade-off between cabin temperature control performance and total fuel consumption, allowing to compare and evaluate the different EMS calibrations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241265773","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of electrified vehicles is a promising step toward energy savings, emissions reduction, environmental protection, and more sustainable economic growth. In the case of hybrid electric vehicles (HEVs), the energy management strategy (EMS) is essential for their efficiency and energy consumption. Typically, EMS employs rule-based strategies calibrated to general driving conditions. So, this paper proposes to calibrate the EMS of an urban hybrid electric bus that covers a particular route by taking advantage of past driving information. The EMS computes the percentage of the vehicle power demand that must be supplied by each of the sources (fuel and battery) and also controls the heating, ventilating and air conditioning (HVAC) system to achieve cabin thermal comfort. The proposed approach is based on employing an optimal solution by dynamic programing in a previous loop covered by the bus in the considered route. Then, the cost-to-go matrix is stored and used in the following trips by applying the one-step look-ahead rollout, taking profit from the similarities of the loops in the route. To compare and evaluate the performance of the proposed algorithm, a benchmark was carried out by employing the widespread equivalent consumption minimization strategy (ECMS) approach, combined with rule-based strategies in the HVAC control system. Finally, the pareto front presents the trade-off between cabin temperature control performance and total fuel consumption, allowing to compare and evaluate the different EMS calibrations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.