Information index augmented eRG to model vaccination behaviour: A case study of COVID-19 in the US

Bruno Buonomo, Alessandra D'Alise, Rossella Della Marca, Francesco Sannino
{"title":"Information index augmented eRG to model vaccination behaviour: A case study of COVID-19 in the US","authors":"Bruno Buonomo, Alessandra D'Alise, Rossella Della Marca, Francesco Sannino","doi":"arxiv-2407.20711","DOIUrl":null,"url":null,"abstract":"Recent pandemics triggered the development of a number of mathematical models\nand computational tools apt at curbing the socio-economic impact of these and\nfuture pandemics. The need to acquire solid estimates from the data led to the\nintroduction of effective approaches such as the \\emph{epidemiological\nRenormalization Group} (eRG). A recognized relevant factor impacting the\nevolution of pandemics is the feedback stemming from individuals' choices. The\nlatter can be taken into account via the \\textit{information index} which\naccommodates the information--induced perception regarding the status of the\ndisease and the memory of past spread. We, therefore, show how to augment the\neRG by means of the information index. We first develop the {\\it behavioural}\nversion of the eRG and then test it against the US vaccination campaign for\nCOVID-19. We find that the behavioural augmented eRG improves the description\nof the pandemic dynamics of the US divisions for which the epidemic peak occurs\nafter the start of the vaccination campaign. Our results strengthen the\nrelevance of taking into account the human behaviour component when modelling\npandemic evolution. To inform public health policies, the model can be readily\nemployed to investigate the socio-epidemiological dynamics, including\nvaccination campaigns, for other regions of the world.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"363 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent pandemics triggered the development of a number of mathematical models and computational tools apt at curbing the socio-economic impact of these and future pandemics. The need to acquire solid estimates from the data led to the introduction of effective approaches such as the \emph{epidemiological Renormalization Group} (eRG). A recognized relevant factor impacting the evolution of pandemics is the feedback stemming from individuals' choices. The latter can be taken into account via the \textit{information index} which accommodates the information--induced perception regarding the status of the disease and the memory of past spread. We, therefore, show how to augment the eRG by means of the information index. We first develop the {\it behavioural} version of the eRG and then test it against the US vaccination campaign for COVID-19. We find that the behavioural augmented eRG improves the description of the pandemic dynamics of the US divisions for which the epidemic peak occurs after the start of the vaccination campaign. Our results strengthen the relevance of taking into account the human behaviour component when modelling pandemic evolution. To inform public health policies, the model can be readily employed to investigate the socio-epidemiological dynamics, including vaccination campaigns, for other regions of the world.
信息指数增强型 eRG 用于疫苗接种行为建模:美国 COVID-19 案例研究
最近的流行病引发了一系列数学模型和计算工具的开发,这些数学模型和计算工具可用于遏制这些流行病和未来流行病的社会经济影响。由于需要从数据中获得可靠的估计,因此引入了有效的方法,如流行病学再规范化小组(eRG)。影响流行病演变的一个公认的相关因素是来自个人选择的反馈。我们可以通过信息指数(textit{information index})将后者考虑在内,该指数可以容纳由信息引起的对疾病状况的感知以及对过去传播情况的记忆。因此,我们展示了如何通过信息指数来增强ReRG。我们首先开发了eRG的{(it behavioural}版本,然后用美国的COVID-19疫苗接种活动进行了测试。我们发现,行为增强型 eRG 改进了对美国分区流行病动态的描述,该分区的流行高峰出现在疫苗接种活动开始之后。我们的研究结果加强了在模拟流行病演变时考虑人类行为因素的相关性。为了给公共卫生政策提供信息,该模型可随时用于研究世界其他地区的社会流行病学动态,包括疫苗接种活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信