Deciphering the distribution of Indian mackerel, Rastrelliger kanagurta (Cuvier, 1817) along the Northwest coasts of India

Sahina Akter, Ajay Nakhawa, Santosh Bhendekar, Dhanya M. Lal, Zeba Jaffer Abidi, Binaya Bhusan Nayak, Karankumar Ramteke
{"title":"Deciphering the distribution of Indian mackerel, Rastrelliger kanagurta (Cuvier, 1817) along the Northwest coasts of India","authors":"Sahina Akter, Ajay Nakhawa, Santosh Bhendekar, Dhanya M. Lal, Zeba Jaffer Abidi, Binaya Bhusan Nayak, Karankumar Ramteke","doi":"10.1007/s41208-024-00747-6","DOIUrl":null,"url":null,"abstract":"<p><i>Rastrelliger kanagurta</i> (Cuvier, 1817), commonly known as the Indian mackerel, is found widely across the coastlines of the Indian Ocean. This study explores the applicability of the Generalized Additive Model (GAM) for predicting the habitat preferences of the Indian mackerel. Data on Indian mackerel catch and oceanographic parameters were collected from January 2017 to April 2019. Parameters such as Sea Surface Temperature (SST), Chlorophyll-a concentration (CHL), Sea Surface Height (SSH), Sea Surface Salinity (SSS), Mixed Layer Depth (MLD), and Ocean Currents (OC) were sourced from the Copernicus Marine Environment Monitoring Service (CMEMS) satellites. Initial ggpairs plot analysis showed positive correlations between Indian mackerel abundance and SSH (<i>p</i> &lt; 0.01, <i>r</i> = 0.19), and negative correlations with SSS (<i>p</i> &lt; 0.01, <i>r</i> = -0.23) and OC (<i>p</i> &lt; 0.05, <i>r</i> = -0.15). GAM results indicated that CHL (<i>p</i> &lt; 0.001), SSS (<i>p</i> &lt; 0.001), SSH (<i>p</i> &lt; 0.001), SST (<i>p</i> &lt; 0.001), and MLD (<i>p</i> &lt; 0.05) significantly influence Indian mackerel catch along the Northwest coast of India. The distribution map revealed high abundance in the coastal waters of Mumbai and Raigad. GAM outputs were employed to generate a spatial prediction map, suggesting the potential for increased catches beyond 50 m depth compared to coastal areas. This study highlights the usefulness of multispectral satellite images in identifying potential fishing grounds. The findings from this research can aid decision-making, reduce fuel costs related to search and fishing operations, and enhance understanding of climate change effects on Indian mackerel distribution.</p>","PeriodicalId":22298,"journal":{"name":"Thalassas: An International Journal of Marine Sciences","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thalassas: An International Journal of Marine Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41208-024-00747-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rastrelliger kanagurta (Cuvier, 1817), commonly known as the Indian mackerel, is found widely across the coastlines of the Indian Ocean. This study explores the applicability of the Generalized Additive Model (GAM) for predicting the habitat preferences of the Indian mackerel. Data on Indian mackerel catch and oceanographic parameters were collected from January 2017 to April 2019. Parameters such as Sea Surface Temperature (SST), Chlorophyll-a concentration (CHL), Sea Surface Height (SSH), Sea Surface Salinity (SSS), Mixed Layer Depth (MLD), and Ocean Currents (OC) were sourced from the Copernicus Marine Environment Monitoring Service (CMEMS) satellites. Initial ggpairs plot analysis showed positive correlations between Indian mackerel abundance and SSH (p < 0.01, r = 0.19), and negative correlations with SSS (p < 0.01, r = -0.23) and OC (p < 0.05, r = -0.15). GAM results indicated that CHL (p < 0.001), SSS (p < 0.001), SSH (p < 0.001), SST (p < 0.001), and MLD (p < 0.05) significantly influence Indian mackerel catch along the Northwest coast of India. The distribution map revealed high abundance in the coastal waters of Mumbai and Raigad. GAM outputs were employed to generate a spatial prediction map, suggesting the potential for increased catches beyond 50 m depth compared to coastal areas. This study highlights the usefulness of multispectral satellite images in identifying potential fishing grounds. The findings from this research can aid decision-making, reduce fuel costs related to search and fishing operations, and enhance understanding of climate change effects on Indian mackerel distribution.

Abstract Image

解读印度鲭 Rastrelliger kanagurta(Cuvier,1817 年)在印度西北海岸的分布情况
Rastrelliger kanagurta(Cuvier,1817 年)俗称印度鲭,广泛分布于印度洋沿岸。本研究探讨了广义相加模型(GAM)预测印度鲭栖息地偏好的适用性。2017年1月至2019年4月期间收集了印度鲭鱼的渔获量和海洋学参数数据。海面温度(SST)、叶绿素a浓度(CHL)、海面高度(SSH)、海面盐度(SSS)、混合层深度(MLD)和洋流(OC)等参数来自哥白尼海洋环境监测服务(CMEMS)卫星。初步的 ggpairs 图分析表明,印度鲭鱼丰度与 SSH 呈正相关(p < 0.01,r = 0.19),与 SSS 呈负相关(p < 0.01,r = -0.23),与 OC 呈负相关(p < 0.05,r = -0.15)。GAM 结果表明,CHL (p < 0.001)、SSS (p < 0.001)、SSH (p < 0.001)、SST (p < 0.001)和 MLD (p < 0.05) 对印度西北海岸的印度鲭渔获量有显著影响。分布图显示孟买和拉伊加德沿海水域的丰度较高。利用 GAM 输出生成的空间预测图显示,与沿海地区相比,50 米深度以外的渔获量有可能增加。这项研究强调了多光谱卫星图像在确定潜在渔场方面的作用。研究结果有助于决策,降低搜索和捕鱼作业的燃料成本,并加深了解气候变化对印度鲭鱼分布的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信