Analysis of Gaussian phase noise effects in DFT-s-OFDM systems for sub-THz transmissions

IF 2.3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yaya Bello, Jean-Baptiste Doré, David Demmer
{"title":"Analysis of Gaussian phase noise effects in DFT-s-OFDM systems for sub-THz transmissions","authors":"Yaya Bello, Jean-Baptiste Doré, David Demmer","doi":"10.1186/s13638-024-02350-y","DOIUrl":null,"url":null,"abstract":"<p>The future generations of communication technologies envision the transmission of signals across the millimeter wave and sub-THz spectrums. However, the characteristics of the propagation channel at such high frequencies differ from what is observed in the conventional low-frequency spectrum with for instance, the apparition of stronger phase noise (PN) induced by the Radio Frequency (RF) transceivers and more especially by the oscillators. That is why there is growing interest in evaluating and adapting the 5G new radio (5G-NR) physical layer to the presence of PN. This article is dedicated to the study of discrete Fourier transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) under uncorrelated Gaussian PN (GPN) impairments. We show that the presence of GPN induces two distortions: (i) a frequency-dependent random rotation of data, namely the subcarrier phase error (SPE) and (ii) a frequency-dependent intercarrier interference (ICI) that are analytically expressed. Then, we investigate the design of the adapted and optimal detection criterion according to the baseband model we derived in this paper. We demonstrate that (i) the proposed polar detector outperforms the conventional Euclidean detector and (ii) contrary to legacy OFDM, DFT-s-OFDM is a promising solution when strong GPN is involved.</p>","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"65 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13638-024-02350-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The future generations of communication technologies envision the transmission of signals across the millimeter wave and sub-THz spectrums. However, the characteristics of the propagation channel at such high frequencies differ from what is observed in the conventional low-frequency spectrum with for instance, the apparition of stronger phase noise (PN) induced by the Radio Frequency (RF) transceivers and more especially by the oscillators. That is why there is growing interest in evaluating and adapting the 5G new radio (5G-NR) physical layer to the presence of PN. This article is dedicated to the study of discrete Fourier transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) under uncorrelated Gaussian PN (GPN) impairments. We show that the presence of GPN induces two distortions: (i) a frequency-dependent random rotation of data, namely the subcarrier phase error (SPE) and (ii) a frequency-dependent intercarrier interference (ICI) that are analytically expressed. Then, we investigate the design of the adapted and optimal detection criterion according to the baseband model we derived in this paper. We demonstrate that (i) the proposed polar detector outperforms the conventional Euclidean detector and (ii) contrary to legacy OFDM, DFT-s-OFDM is a promising solution when strong GPN is involved.

Abstract Image

亚千赫传输 DFT-s-OFDM 系统中的高斯相位噪声效应分析
未来的通信技术将在毫米波和亚千赫频谱上传输信号。然而,这种高频率的传播信道特性与传统低频频谱不同,例如,射频(RF)收发器,尤其是振荡器会产生较强的相位噪声(PN)。因此,人们对评估和调整 5G 新无线电(5G-NR)物理层以适应 PN 的存在越来越感兴趣。本文致力于研究非相关高斯 PN(GPN)损伤下的离散傅里叶变换-传播-正交频分复用(DFT-s-OFDM)。我们证明,GPN 的存在会引起两种失真:(i) 与频率相关的数据随机旋转,即子载波相位误差 (SPE);(ii) 与频率相关的载波间干扰 (ICI),这两种失真都可以通过分析来表示。然后,我们根据本文推导出的基带模型,研究了适应性最优检测准则的设计。我们证明:(i) 所提出的极性检测器优于传统的欧几里得检测器;(ii) 与传统的 OFDM 相反,当涉及强 GPN 时,DFT-s-OFDM 是一种很有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
3.80%
发文量
109
审稿时长
8.0 months
期刊介绍: The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process. The journal is an Open Access journal since 2004.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信