Study on crack propagation characteristics of rocks with different lateral pressure based on joint monitoring of DIC and AE

IF 3.9 2区 工程技术 Q3 ENERGY & FUELS
Wei Zhang, Wan-rong Liu, Xu-tao Zhang
{"title":"Study on crack propagation characteristics of rocks with different lateral pressure based on joint monitoring of DIC and AE","authors":"Wei Zhang, Wan-rong Liu, Xu-tao Zhang","doi":"10.1007/s40948-024-00850-1","DOIUrl":null,"url":null,"abstract":"<p>During the process of rock failure, the characteristics of crack propagation affect the fracture characteristics and macroscopic mechanical behavior of rocks, indirectly affecting the safety and stability of rock engineering. In order to study the evolution characteristics of cracks during rock failure under different lateral pressure, based on an improved digital image correlation (DIC) and acoustic emission (AE) signal recognition method, a visual biaxial servo loading device was developed to conduct biaxial compression tests on mudstone with prefabricated cracks of the same inclination angle. The research results indicate that the stages of crack propagation include microcracks propagation, crack tip formation, stable macroscopic cracks propagation, and unstable macroscopic cracks propagation. As the lateral pressure increased, the initiation frequency of cracks decreased, the quantity of propagation decreased, and the propagation path shortened, indirectly increasing the bearing strength of rocks. The initiation stress, peak stress, and elastic modulus of pre-cracked rocks with lateral pressure ≤ 2 MPa were lower than those of pre-cracked rocks with lateral pressure &gt; 3 MPa, with the minimum reduction amplitude of 14.1%, 21.2%, and 12.6%, respectively. As the lateral pressure decreased, the dispersion of the AE main frequency distribution increased and accelerated its downward expansion. The surface temperature curves of rocks were prone to fluctuations and rapid upward evolution characteristics corresponding to crack tip formation and crack propagation, respectively. The research results provide theoretical and engineering references for the mining of weak coal seams.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"74 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40948-024-00850-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

During the process of rock failure, the characteristics of crack propagation affect the fracture characteristics and macroscopic mechanical behavior of rocks, indirectly affecting the safety and stability of rock engineering. In order to study the evolution characteristics of cracks during rock failure under different lateral pressure, based on an improved digital image correlation (DIC) and acoustic emission (AE) signal recognition method, a visual biaxial servo loading device was developed to conduct biaxial compression tests on mudstone with prefabricated cracks of the same inclination angle. The research results indicate that the stages of crack propagation include microcracks propagation, crack tip formation, stable macroscopic cracks propagation, and unstable macroscopic cracks propagation. As the lateral pressure increased, the initiation frequency of cracks decreased, the quantity of propagation decreased, and the propagation path shortened, indirectly increasing the bearing strength of rocks. The initiation stress, peak stress, and elastic modulus of pre-cracked rocks with lateral pressure ≤ 2 MPa were lower than those of pre-cracked rocks with lateral pressure > 3 MPa, with the minimum reduction amplitude of 14.1%, 21.2%, and 12.6%, respectively. As the lateral pressure decreased, the dispersion of the AE main frequency distribution increased and accelerated its downward expansion. The surface temperature curves of rocks were prone to fluctuations and rapid upward evolution characteristics corresponding to crack tip formation and crack propagation, respectively. The research results provide theoretical and engineering references for the mining of weak coal seams.

Abstract Image

基于 DIC 和 AE 联合监测的不同侧压力岩石裂缝扩展特性研究
在岩石崩塌过程中,裂纹的扩展特征会影响岩石的断裂特征和宏观力学行为,间接影响岩石工程的安全性和稳定性。为了研究不同侧向压力下岩石破坏过程中裂缝的演化特征,基于改进的数字图像相关(DIC)和声发射(AE)信号识别方法,开发了可视化双轴伺服加载装置,对预制了相同倾角裂缝的泥岩进行双轴压缩试验。研究结果表明,裂纹扩展阶段包括微裂纹扩展、裂纹尖端形成、稳定的宏观裂纹扩展和不稳定的宏观裂纹扩展。随着侧压力的增加,裂缝的起始频率降低,扩展量减少,扩展路径缩短,间接提高了岩石的承载强度。侧向压力≤2 MPa 的预裂岩石的萌发应力、峰值应力和弹性模量均低于侧向压力大于等于 3 MPa 的预裂岩石,最小减幅分别为 14.1%、21.2% 和 12.6%。随着侧向压力的降低,AE 主频分布的离散性增加,并加速向下扩展。岩石表面温度曲线容易出现波动和快速向上演变的特征,分别与裂纹尖端形成和裂纹扩展相对应。研究成果为开采软弱煤层提供了理论和工程参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomechanics and Geophysics for Geo-Energy and Geo-Resources
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Earth and Planetary Sciences-Geophysics
CiteScore
6.40
自引率
16.00%
发文量
163
期刊介绍: This journal offers original research, new developments, and case studies in geomechanics and geophysics, focused on energy and resources in Earth’s subsurface. Covers theory, experimental results, numerical methods, modeling, engineering, technology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信