A Fitted Approximate Method for Solving Singularly Perturbed Volterra–Fredholm Integrodifferential Equations with Integral Boundary Condition

IF 0.5 4区 数学 Q3 MATHEMATICS
Baransel Gunes, Musa Cakir
{"title":"A Fitted Approximate Method for Solving Singularly Perturbed Volterra–Fredholm Integrodifferential Equations with Integral Boundary Condition","authors":"Baransel Gunes, Musa Cakir","doi":"10.1007/s11253-024-02312-z","DOIUrl":null,"url":null,"abstract":"<p>We consider a novel numerical approach for solving boundary-value problems for the second-order Volterra-Fredholm integrodifferential equation with layer behavior and an integral boundary condition. A finite-difference scheme is proposed on suitable Shishkin-type mesh to obtain an approximate solution of the presented problem. It is proved that the method is first-order convergent in the discrete maximum norm. Two numerical examples are included to show the efficiency of the method.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"40 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02312-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a novel numerical approach for solving boundary-value problems for the second-order Volterra-Fredholm integrodifferential equation with layer behavior and an integral boundary condition. A finite-difference scheme is proposed on suitable Shishkin-type mesh to obtain an approximate solution of the presented problem. It is proved that the method is first-order convergent in the discrete maximum norm. Two numerical examples are included to show the efficiency of the method.

求解带积分边界条件的奇异扰动 Volterra-Fredholm 积分微分方程的拟合近似法
我们考虑了一种新的数值方法,用于求解具有层行为和积分边界条件的二阶 Volterra-Fredholm 微分方程的边界值问题。在合适的 Shishkin 型网格上提出了一种有限差分方案,以获得所提问题的近似解。研究证明,该方法在离散最大规范下具有一阶收敛性。两个数值示例展示了该方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ukrainian Mathematical Journal
Ukrainian Mathematical Journal MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
107
审稿时长
4-8 weeks
期刊介绍: Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries. Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信