{"title":"Fractal Embedded Boxes of Bifurcations","authors":"Christian Mira","doi":"10.1007/s11253-024-02309-8","DOIUrl":null,"url":null,"abstract":"<p>This descriptive text is essentially based on Sharkovsky’s and Myrberg’s publications on the ordering of periodic solutions <i>(cycles)</i> generated by a Dim 1 unimodal smooth map <i>f</i>(<i>x</i>, <i>λ</i>)<i>.</i> Taking <i>f</i>(<i>x</i>, <i>λ</i>) = <i>x</i><sup>2</sup><i>−λ</i> as an example, it was shown in a paper published in 1975 that the bifurcations are organized in the form of a sequence of <i>well-defined fractal embedded “boxes”</i> (parameter <i>λ</i> intervals) each of which is associated with a basic cycle of period <i>k</i> and a symbol <i>j</i> permitting to distinguish cycles with the same period <i>k.</i> Without using the denominations <i>Intermittency</i> (1980) and <i>Attractors in Crisis</i> (1982), this new text shows that the notion of <i>fractal embedded “boxes”</i> describes the properties of each of these two situations as the <i>limit of a sequence of well-defined boxes</i> (<i>k</i>, <i>j</i>) as <i>k</i> → ∞.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"213 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02309-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This descriptive text is essentially based on Sharkovsky’s and Myrberg’s publications on the ordering of periodic solutions (cycles) generated by a Dim 1 unimodal smooth map f(x, λ). Taking f(x, λ) = x2−λ as an example, it was shown in a paper published in 1975 that the bifurcations are organized in the form of a sequence of well-defined fractal embedded “boxes” (parameter λ intervals) each of which is associated with a basic cycle of period k and a symbol j permitting to distinguish cycles with the same period k. Without using the denominations Intermittency (1980) and Attractors in Crisis (1982), this new text shows that the notion of fractal embedded “boxes” describes the properties of each of these two situations as the limit of a sequence of well-defined boxes (k, j) as k → ∞.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.