{"title":"Penalized estimation for non-identifiable models","authors":"Junichiro Yoshida, Nakahiro Yoshida","doi":"10.1007/s10463-024-00905-w","DOIUrl":null,"url":null,"abstract":"<div><p>We derive asymptotic properties of penalized estimators for singular models for which identifiability may break and the true parameter values can lie on the boundary of the parameter space. Selection consistency of the estimators is also validated. The problem that the true values lie on the boundary is solved by our previous results applicable to singular models, besides, penalized estimation and non-ergodic statistics. To overcome non-identifiability, we consider a suitable penalty such as the non-convex Bridge and the adaptive Lasso that stabilize the asymptotic behavior of the estimator and shrink inactive parameters. Then the estimator converges to one of the most parsimonious values among all the true values. The oracle property can also be obtained even if likelihood ratio tests for model selection are labor intensive due to singularity of models. Examples are: a superposition of parametric proportional hazard models and a counting process having intensity with multicollinear covariates.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-024-00905-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We derive asymptotic properties of penalized estimators for singular models for which identifiability may break and the true parameter values can lie on the boundary of the parameter space. Selection consistency of the estimators is also validated. The problem that the true values lie on the boundary is solved by our previous results applicable to singular models, besides, penalized estimation and non-ergodic statistics. To overcome non-identifiability, we consider a suitable penalty such as the non-convex Bridge and the adaptive Lasso that stabilize the asymptotic behavior of the estimator and shrink inactive parameters. Then the estimator converges to one of the most parsimonious values among all the true values. The oracle property can also be obtained even if likelihood ratio tests for model selection are labor intensive due to singularity of models. Examples are: a superposition of parametric proportional hazard models and a counting process having intensity with multicollinear covariates.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.