An approximation to peak detection power using Gaussian random field theory

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Yu Zhao , Dan Cheng , Armin Schwartzman
{"title":"An approximation to peak detection power using Gaussian random field theory","authors":"Yu Zhao ,&nbsp;Dan Cheng ,&nbsp;Armin Schwartzman","doi":"10.1016/j.jmva.2024.105346","DOIUrl":null,"url":null,"abstract":"<div><p>We study power approximation formulas for peak detection using Gaussian random field theory. The approximation, based on the expected number of local maxima above the threshold <span><math><mi>u</mi></math></span>, <span><math><mrow><mi>E</mi><mrow><mo>[</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span>, is proved to work well under three asymptotic scenarios: small domain, large threshold, and sharp signal. An adjusted version of <span><math><mrow><mi>E</mi><mrow><mo>[</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span> is also proposed to improve accuracy when the expected number of local maxima <span><math><mrow><mi>E</mi><mrow><mo>[</mo><msub><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mi>∞</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span> exceeds 1. Cheng and Schwartzman (2018) developed explicit formulas for <span><math><mrow><mi>E</mi><mrow><mo>[</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span> of smooth isotropic Gaussian random fields with zero mean. In this paper, these formulas are extended to allow for rotational symmetric mean functions, making them applicable not only for power calculations but also for other areas of application that involve non-centered Gaussian random fields. We also apply our formulas to 2D and 3D simulated datasets, and the 3D data is induced by a group analysis of fMRI data from the Human Connectome Project to measure performance in a realistic setting.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000538","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We study power approximation formulas for peak detection using Gaussian random field theory. The approximation, based on the expected number of local maxima above the threshold u, E[Mu], is proved to work well under three asymptotic scenarios: small domain, large threshold, and sharp signal. An adjusted version of E[Mu] is also proposed to improve accuracy when the expected number of local maxima E[M] exceeds 1. Cheng and Schwartzman (2018) developed explicit formulas for E[Mu] of smooth isotropic Gaussian random fields with zero mean. In this paper, these formulas are extended to allow for rotational symmetric mean functions, making them applicable not only for power calculations but also for other areas of application that involve non-centered Gaussian random fields. We also apply our formulas to 2D and 3D simulated datasets, and the 3D data is induced by a group analysis of fMRI data from the Human Connectome Project to measure performance in a realistic setting.

使用高斯随机场理论的峰值检测功率近似值
我们利用高斯随机场理论研究了峰值检测的幂近似公式。该近似公式基于阈值 , , , 以上局部最大值的预期数量,在三种渐近情况下证明效果良好:小域、大阈值和尖锐信号。还提出了一个调整版本的 ,以提高局部最大值的预期数目超过 1 时的精度。Cheng 和 Schwartzman(2018)开发了均值为零的平滑各向同性高斯随机场的显式公式。本文对这些公式进行了扩展,以允许旋转对称均值函数,使其不仅适用于幂计算,还适用于涉及非中心高斯随机场的其他应用领域。我们还将公式应用于二维和三维模拟数据集,而三维数据则是通过对人类连接组计划的 fMRI 数据进行分组分析得出的,以衡量现实环境中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信