Existence of nontrivial solutions for a fractional \(p\&q\)-Laplacian equation with sandwich-type and sign-changing nonlinearities

IF 1.5 3区 数学 Q1 MATHEMATICS
Qin Li, Zonghu Xiu, Lin Chen
{"title":"Existence of nontrivial solutions for a fractional \\(p\\&q\\)-Laplacian equation with sandwich-type and sign-changing nonlinearities","authors":"Qin Li, Zonghu Xiu, Lin Chen","doi":"10.1186/s13660-024-03177-3","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the following fractional $p\\&q$ -Laplacian problem: $$ \\left \\{ \\textstyle\\begin{array}{l@{\\quad }l} (-\\Delta )_{p}^{s}u +(-\\Delta )_{q}^{s}u =\\lambda a(x)|u|^{\\theta -2}u+ \\mu b(x)|u|^{r-2}u&\\text{in}\\;\\ \\Omega , \\\\ u(x)=0 &\\text{in}\\;\\ \\mathbb{R}^{N}\\setminus \\Omega , \\end{array}\\displaystyle \\right . $$ where $\\Omega \\subset \\mathbb{R}^{N}$ is a bounded domain with smooth boundary, $s\\in (0,1)$ , $(-\\Delta )_{m}^{s}$ $(m\\in \\{p,q\\})$ is the fractional m-Laplacian operator, $p,q,r,\\theta \\in (1,p_{s}^{*}]$ , $p_{s}^{*}=\\frac{Np}{N-sp}$ , $\\lambda , \\mu >0$ , and the weights $a(x)$ and $b(x)$ are possibly sign changing. Using the concentration compactness principle for fractional Sobolev spaces and the Ekeland variational principle, we prove that the problem admits a nonnegative solution for the critical case $r=p_{s}^{*}$ . Moreover, for the subcritical case $r< p_{s}^{*}$ , we obtain two existence results by applying the Ekeland variational principle and the mountain pass theorem.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"23 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03177-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we deal with the following fractional $p\&q$ -Laplacian problem: $$ \left \{ \textstyle\begin{array}{l@{\quad }l} (-\Delta )_{p}^{s}u +(-\Delta )_{q}^{s}u =\lambda a(x)|u|^{\theta -2}u+ \mu b(x)|u|^{r-2}u&\text{in}\;\ \Omega , \\ u(x)=0 &\text{in}\;\ \mathbb{R}^{N}\setminus \Omega , \end{array}\displaystyle \right . $$ where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary, $s\in (0,1)$ , $(-\Delta )_{m}^{s}$ $(m\in \{p,q\})$ is the fractional m-Laplacian operator, $p,q,r,\theta \in (1,p_{s}^{*}]$ , $p_{s}^{*}=\frac{Np}{N-sp}$ , $\lambda , \mu >0$ , and the weights $a(x)$ and $b(x)$ are possibly sign changing. Using the concentration compactness principle for fractional Sobolev spaces and the Ekeland variational principle, we prove that the problem admits a nonnegative solution for the critical case $r=p_{s}^{*}$ . Moreover, for the subcritical case $r< p_{s}^{*}$ , we obtain two existence results by applying the Ekeland variational principle and the mountain pass theorem.
具有夹心型和符号变化非线性的分数 \(p\&q\)-Laplacian 方程的非微观解的存在性
在本文中,我们将讨论以下分数 $p\&q$ -拉普拉奇问题:(-\Delta)_{p}^{s}u +(-\Delta)_{q}^{s}u =\lambda a(x)|u|^{theta -2}u+ \mu b(x)|u|^{r-2}u&\text{in}\;\ u(x)=0 &\text{in}\;\mathbb{R}^{N}setminus \Omega , \end{array}\displaystyle \right .其中 $\Omega \subset \mathbb{R}^{N}$ 是一个具有光滑边界的有界域,$s 在 (0,1)$ 中,$(-\Delta )_{m}^{s}$ $(m\in \{p,q\})$ 是分数 m-Laplacian 算子、$p,q,r,\theta \in (1,p_{s}^{*}]$ , $p_{s}^{*}=\frac{Np}{N-sp}$ , $\lambda , \mu >0$ , 并且权值 $a(x)$ 和 $b(x)$ 可能是符号变化的。利用分数 Sobolev 空间的集中紧凑性原理和 Ekeland 变分原理,我们证明在临界情况下,问题有一个非负解 $r=p_{s}^{*}$ 。此外,对于次临界情况 $r< p_{s}^{*}$,我们应用埃克兰变分原理和山口定理得到了两个存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信