{"title":"Distance-Based Smoothing of Curves on Surface Meshes","authors":"M. Pawellek, C. Rössl, K. Lawonn","doi":"10.1111/cgf.15135","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The smoothing of surface curves is an essential tool in mesh processing, important to applications that require segmenting and cutting surfaces such as surgical planning. Surface curves are typically designed by professionals to match certain surface features. For this reason, the smoothed curves should be close to the original and easily adjustable by the user in interactive tools. Previous methods achieve this desired behavior, e.g., by utilizing energy-minimizing splines or generalizations of Bézier splines, which require a significant number of control points and may not provide interactive frame rates or numerical stability. This paper presents a new algorithm for robust smoothing of discrete surface curves on triangular surface meshes. By using a scalar penalty potential as the fourth coordinate, the given surface mesh is embedded into the 4D Euclidean space. Our method is based on finding geodesics in this lifted surface, which are then projected back onto the original 3D surface. The benefits of this approach include guaranteed convergence and good approximation of the initial curve. We propose a family of penalty potentials with one single parameter for adjusting the trade-off between smoothness and similarity. The implementation of our method is straightforward as we rely on existing methods for computing geodesics and penalty fields. We evaluate our implementation and confirm its robustness and efficiency.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15135","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15135","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The smoothing of surface curves is an essential tool in mesh processing, important to applications that require segmenting and cutting surfaces such as surgical planning. Surface curves are typically designed by professionals to match certain surface features. For this reason, the smoothed curves should be close to the original and easily adjustable by the user in interactive tools. Previous methods achieve this desired behavior, e.g., by utilizing energy-minimizing splines or generalizations of Bézier splines, which require a significant number of control points and may not provide interactive frame rates or numerical stability. This paper presents a new algorithm for robust smoothing of discrete surface curves on triangular surface meshes. By using a scalar penalty potential as the fourth coordinate, the given surface mesh is embedded into the 4D Euclidean space. Our method is based on finding geodesics in this lifted surface, which are then projected back onto the original 3D surface. The benefits of this approach include guaranteed convergence and good approximation of the initial curve. We propose a family of penalty potentials with one single parameter for adjusting the trade-off between smoothness and similarity. The implementation of our method is straightforward as we rely on existing methods for computing geodesics and penalty fields. We evaluate our implementation and confirm its robustness and efficiency.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.