Revisiting Winnow: A modified online feature selection algorithm for efficient binary classification

IF 2.1 4区 数学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Y. Narasimhulu, Pralhad Kolambkar, Venkaiah V. China
{"title":"Revisiting Winnow: A modified online feature selection algorithm for efficient binary classification","authors":"Y. Narasimhulu, Pralhad Kolambkar, Venkaiah V. China","doi":"10.1002/sam.11707","DOIUrl":null,"url":null,"abstract":"Winnow is an efficient binary classification algorithm that effectively learns from data even in the presence of a large number of irrelevant attributes. It is specifically designed for online learning scenarios. Unlike the Perceptron algorithm, Winnow employs a multiplicative weight update function, which leads to fewer mistakes and faster convergence. However, the original Winnow algorithm has several limitations. They include, it only works on binary data, and the weight updates are constant and do not depend on the input features. In this article, we propose a modified version of the Winnow algorithm that addresses these limitations. The proposed algorithm is capable of handling real‐valued data, updates the learning function based on the input feature vector. To evaluate the performance of our proposed algorithm, we compare it with seven existing variants of the Winnow algorithm on datasets of varying sizes. We employ various evaluation metrics and parameters to assess and compare the performance of the algorithms. The experimental results demonstrate that our proposed algorithm outperforms all the other algorithms used for comparison, highlighting its effectiveness in classification tasks.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"78 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11707","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Winnow is an efficient binary classification algorithm that effectively learns from data even in the presence of a large number of irrelevant attributes. It is specifically designed for online learning scenarios. Unlike the Perceptron algorithm, Winnow employs a multiplicative weight update function, which leads to fewer mistakes and faster convergence. However, the original Winnow algorithm has several limitations. They include, it only works on binary data, and the weight updates are constant and do not depend on the input features. In this article, we propose a modified version of the Winnow algorithm that addresses these limitations. The proposed algorithm is capable of handling real‐valued data, updates the learning function based on the input feature vector. To evaluate the performance of our proposed algorithm, we compare it with seven existing variants of the Winnow algorithm on datasets of varying sizes. We employ various evaluation metrics and parameters to assess and compare the performance of the algorithms. The experimental results demonstrate that our proposed algorithm outperforms all the other algorithms used for comparison, highlighting its effectiveness in classification tasks.
重新审视 Winnow:用于高效二元分类的改进型在线特征选择算法
Winnow 是一种高效的二元分类算法,即使在存在大量无关属性的情况下也能有效地学习数据。它专为在线学习场景而设计。与 Perceptron 算法不同,Winnow 采用了乘法权重更新函数,从而减少了错误,加快了收敛速度。不过,最初的 Winnow 算法有几个局限性。其中包括:该算法仅适用于二进制数据,权重更新是恒定的,不依赖于输入特征。在本文中,我们提出了 Winnow 算法的改进版,以解决这些局限性。该算法能够处理实值数据,并根据输入特征向量更新学习函数。为了评估我们提出的算法的性能,我们在不同规模的数据集上将其与 Winnow 算法的七个现有变体进行了比较。我们采用各种评价指标和参数来评估和比较算法的性能。实验结果表明,我们提出的算法优于用于比较的所有其他算法,突出了其在分类任务中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Analysis and Data Mining
Statistical Analysis and Data Mining COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.20
自引率
7.70%
发文量
43
期刊介绍: Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce. The focus of the journal is on papers which satisfy one or more of the following criteria: Solve data analysis problems associated with massive, complex datasets Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research. Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models Provide survey to prominent research topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信