Semi-covariety of numerical semigroups

M. A. Moreno-Frías, J. C. Rosales
{"title":"Semi-covariety of numerical semigroups","authors":"M. A. Moreno-Frías, J. C. Rosales","doi":"arxiv-2407.18984","DOIUrl":null,"url":null,"abstract":"The main aim of this work is to introduce and justify the study of\nsemi-covarities. A {\\it semi-covariety} is a non-empty family $\\mathcal{F}$ of\nnumerical semigroups such that it is closed under finite intersections, has a\nminimum, $\\min(\\mathcal{F}),$ and if $S\\in \\mathcal{F}$ being $S\\neq\n\\min(\\mathcal{F})$, then there is $x\\in S$ such that $S\\backslash \\{x\\}\\in\n\\mathcal{F}$. As examples, we will study the semi-covariety formed by all the\nnumerical semigroups containing a fixed numerical semigroup, and the\nsemi-covariety composed by all the numerical semigroups of coated odd elements\nand fixed Frobenius number.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main aim of this work is to introduce and justify the study of semi-covarities. A {\it semi-covariety} is a non-empty family $\mathcal{F}$ of numerical semigroups such that it is closed under finite intersections, has a minimum, $\min(\mathcal{F}),$ and if $S\in \mathcal{F}$ being $S\neq \min(\mathcal{F})$, then there is $x\in S$ such that $S\backslash \{x\}\in \mathcal{F}$. As examples, we will study the semi-covariety formed by all the numerical semigroups containing a fixed numerical semigroup, and the semi-covariety composed by all the numerical semigroups of coated odd elements and fixed Frobenius number.
数值半群的半可变性
这项工作的主要目的是介绍和论证半协元的研究。一个{it semi-covariety}是一个非空的$\mathcal{F}$数值半群族,它在有限交集下是封闭的,有一个最小值、如果 $S\in \mathcal{F}$ 是 $S\neq\min(\mathcal{F})$,那么在 S$ 中存在 $x\,使得 $S\backslash\{x\}\inmathcal{F}$.作为例子,我们将研究由包含固定数值半群的所有数值半群构成的半协元,以及由包含奇数元素和固定弗罗贝尼斯数的所有数值半群构成的半协元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信