Hybrid Optimized Deep Neural Network-Based Intrusion Node Detection and Modified Energy Efficient Centralized Clustering Routing Protocol for Wireless Sensor Network

IF 4.3 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ali Siddiq;Yahya Jaber Ghazwani
{"title":"Hybrid Optimized Deep Neural Network-Based Intrusion Node Detection and Modified Energy Efficient Centralized Clustering Routing Protocol for Wireless Sensor Network","authors":"Ali Siddiq;Yahya Jaber Ghazwani","doi":"10.1109/TCE.2024.3430974","DOIUrl":null,"url":null,"abstract":"As Internet of Things (IoT) technologies advance, applications such as smart cities, healthcare, and smart grids will become increasingly commonplace. A wireless sensor network (WSN) is one of the futuristic technologies used in IoT-enabled applications for sensing and data transmission. An IoT-enabled WSN (IWSN) is characterized by several sensors dispersed randomly in open and harsh environments. Given the resource constraints of sensor nodes (SNs) and the hostile deployment environments, designing routing protocols for WSNs necessitates a focus on energy efficiency and security. An optimized hybrid model, Hybrid Optimized Deep Neural Network (HODNN), is designed using Deep Neural Networks (DNNs) to maximize its detection accuracy. The source node determines the shortest path to the destination after detecting malicious nodes and performs secure routing without malicious nodes. A modified energy-efficient centralized clustering routing protocol determines the optimum path for routing data in the proposed model (MEECRP). The paper presents HMRP-IWSN, HODNN-based intrusion detection and MEECR protocol for securing IWSN data. Through comprehensive evaluation using various performance metrics, HMRP-IWSN demonstrates superior outcomes compared to existing methods, including a higher packet-delivery ratio (PDR), detection rate, lower delay and energy usage, and an extended network lifespan.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"70 3","pages":"6303-6313"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10612824/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As Internet of Things (IoT) technologies advance, applications such as smart cities, healthcare, and smart grids will become increasingly commonplace. A wireless sensor network (WSN) is one of the futuristic technologies used in IoT-enabled applications for sensing and data transmission. An IoT-enabled WSN (IWSN) is characterized by several sensors dispersed randomly in open and harsh environments. Given the resource constraints of sensor nodes (SNs) and the hostile deployment environments, designing routing protocols for WSNs necessitates a focus on energy efficiency and security. An optimized hybrid model, Hybrid Optimized Deep Neural Network (HODNN), is designed using Deep Neural Networks (DNNs) to maximize its detection accuracy. The source node determines the shortest path to the destination after detecting malicious nodes and performs secure routing without malicious nodes. A modified energy-efficient centralized clustering routing protocol determines the optimum path for routing data in the proposed model (MEECRP). The paper presents HMRP-IWSN, HODNN-based intrusion detection and MEECR protocol for securing IWSN data. Through comprehensive evaluation using various performance metrics, HMRP-IWSN demonstrates superior outcomes compared to existing methods, including a higher packet-delivery ratio (PDR), detection rate, lower delay and energy usage, and an extended network lifespan.
基于深度神经网络的混合优化入侵节点检测和面向无线传感器网络的改进型高能效集中聚类路由协议
随着物联网(IoT)技术的进步,智能城市、医疗保健和智能电网等应用将变得越来越普遍。无线传感器网络(WSN)是物联网应用中用于传感和数据传输的未来技术之一。支持物联网的WSN (IWSN)的特点是多个传感器随机分布在开放和恶劣的环境中。考虑到传感器节点的资源约束和恶劣的部署环境,设计wsn路由协议需要关注能效和安全性。利用深度神经网络(dnn)设计了一种优化的混合模型——混合优化深度神经网络(HODNN),以最大限度地提高其检测精度。源节点在检测到恶意节点后,确定到达目的节点的最短路径,并在没有恶意节点的情况下进行安全路由。在MEECRP模型中,一种改进的节能集中式聚类路由协议确定了路由数据的最优路径。本文提出了HMRP-IWSN、基于hodnn的入侵检测和MEECR协议来保护IWSN数据。通过使用各种性能指标进行综合评估,与现有方法相比,HMRP-IWSN显示出更好的结果,包括更高的分组传输比(PDR)、检测率、更低的延迟和能源使用,以及更长的网络寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信