Muhammad Iffan Hannanu, Eduardo Camponogara, Thiago Lima Silva, Morten Hovd
{"title":"A modified derivative-free SQP-filter trust-region method for uncertainty handling: application in gas-lift optimization","authors":"Muhammad Iffan Hannanu, Eduardo Camponogara, Thiago Lima Silva, Morten Hovd","doi":"10.1007/s11081-024-09909-0","DOIUrl":null,"url":null,"abstract":"<p>We propose an effective algorithm for black-box optimization problems without derivatives in the presence of output constraints. The proposed algorithm is illustrated using a realistic short-term oil production case with complex functions describing system dynamics and output constraints. The results show that our algorithm provides feasible and locally near-optimal solutions for a complex decision-making problem under uncertainty. The proposed algorithm relies on building approximation models using a reduced number of function evaluations, resulting from (i) an efficient model improvement algorithm, (ii) a decomposition of the network of wells, and (iii) using a spectral method for handling uncertainty. We show, in our case study, that the use of the approximation models introduced in this paper can reduce the required number of simulation runs by a factor of 40 and the computation time by a factor of 2600 compared to the Monte Carlo simulation with similarly satisfactory results.</p>","PeriodicalId":56141,"journal":{"name":"Optimization and Engineering","volume":"41 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-024-09909-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose an effective algorithm for black-box optimization problems without derivatives in the presence of output constraints. The proposed algorithm is illustrated using a realistic short-term oil production case with complex functions describing system dynamics and output constraints. The results show that our algorithm provides feasible and locally near-optimal solutions for a complex decision-making problem under uncertainty. The proposed algorithm relies on building approximation models using a reduced number of function evaluations, resulting from (i) an efficient model improvement algorithm, (ii) a decomposition of the network of wells, and (iii) using a spectral method for handling uncertainty. We show, in our case study, that the use of the approximation models introduced in this paper can reduce the required number of simulation runs by a factor of 40 and the computation time by a factor of 2600 compared to the Monte Carlo simulation with similarly satisfactory results.
期刊介绍:
Optimization and Engineering is a multidisciplinary journal; its primary goal is to promote the application of optimization methods in the general area of engineering sciences. We expect submissions to OPTE not only to make a significant optimization contribution but also to impact a specific engineering application.
Topics of Interest:
-Optimization: All methods and algorithms of mathematical optimization, including blackbox and derivative-free optimization, continuous optimization, discrete optimization, global optimization, linear and conic optimization, multiobjective optimization, PDE-constrained optimization & control, and stochastic optimization. Numerical and implementation issues, optimization software, benchmarking, and case studies.
-Engineering Sciences: Aerospace engineering, biomedical engineering, chemical & process engineering, civil, environmental, & architectural engineering, electrical engineering, financial engineering, geosciences, healthcare engineering, industrial & systems engineering, mechanical engineering & MDO, and robotics.