Locking-free Argyris–Lagrange finite elements for the Reissner–Mindlin plate

IF 1.4 2区 数学 Q1 MATHEMATICS
Calcolo Pub Date : 2024-07-29 DOI:10.1007/s10092-024-00608-x
Yunqing Huang, Shangyou Zhang
{"title":"Locking-free Argyris–Lagrange finite elements for the Reissner–Mindlin plate","authors":"Yunqing Huang, Shangyou Zhang","doi":"10.1007/s10092-024-00608-x","DOIUrl":null,"url":null,"abstract":"<p>The <span>\\(C^1\\)</span>-<span>\\(P_{k+1}\\)</span> (<span>\\(k\\ge 4\\)</span>) Argyris finite elements combined with the <span>\\(C^0\\)</span>-<span>\\(P_k\\)</span> Lagrange finite elements are locking-free with respect to the plate thickness, and quasi-optimal when solving the Reissner–Mindlin plate equation on triangular meshes. The method is truly conforming or consistent in the sense that no reduction operator is introduced to the formulation. Theoretical proof and numerical verification are presented.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":"88 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00608-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The \(C^1\)-\(P_{k+1}\) (\(k\ge 4\)) Argyris finite elements combined with the \(C^0\)-\(P_k\) Lagrange finite elements are locking-free with respect to the plate thickness, and quasi-optimal when solving the Reissner–Mindlin plate equation on triangular meshes. The method is truly conforming or consistent in the sense that no reduction operator is introduced to the formulation. Theoretical proof and numerical verification are presented.

Abstract Image

用于 Reissner-Mindlin 板的无锁定 Argyris-Lagrange 有限元
(C^1\)-\(P_{k+1}\) (\(k\ge 4\))阿基里斯有限元与拉格朗日有限元相结合,在板厚度方面是无锁定的,在三角形网格上求解赖斯纳-明德林板方程时是准最优的。该方法是真正符合或一致的,因为在公式中没有引入还原算子。本文给出了理论证明和数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Calcolo
Calcolo 数学-数学
CiteScore
2.40
自引率
11.80%
发文量
36
审稿时长
>12 weeks
期刊介绍: Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation. The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory. Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信