{"title":"Controlled Lagrangians and Stabilization of Euler–Poincaré Equations with Symmetry Breaking Nonholonomic Constraints","authors":"Jorge S. Garcia, Tomoki Ohsawa","doi":"10.1007/s00332-024-10066-y","DOIUrl":null,"url":null,"abstract":"<p>We extend the method of controlled Lagrangians to nonholonomic Euler–Poincaré equations with advected parameters, specifically to those mechanical systems on Lie groups whose symmetry is broken not only by a potential force but also by nonholonomic constraints. We introduce advected-parameter-dependent quasivelocities in order to systematically eliminate the Lagrange multipliers in the nonholonomic Euler–Poincaré equations. The quasivelocities facilitate the method of controlled Lagrangians for these systems, and lead to matching conditions that are similar to those by Bloch, Leonard, and Marsden for the standard holonomic Euler–Poincaré equation. Our motivating example is what we call the pendulum skate, a simple model of a figure skater developed by Gzenda and Putkaradze. We show that the upright spinning of the pendulum skate is stable under certain conditions, whereas the upright sliding equilibrium is always unstable. Using the matching condition, we derive a control law to stabilize the sliding equilibrium.</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"75 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10066-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We extend the method of controlled Lagrangians to nonholonomic Euler–Poincaré equations with advected parameters, specifically to those mechanical systems on Lie groups whose symmetry is broken not only by a potential force but also by nonholonomic constraints. We introduce advected-parameter-dependent quasivelocities in order to systematically eliminate the Lagrange multipliers in the nonholonomic Euler–Poincaré equations. The quasivelocities facilitate the method of controlled Lagrangians for these systems, and lead to matching conditions that are similar to those by Bloch, Leonard, and Marsden for the standard holonomic Euler–Poincaré equation. Our motivating example is what we call the pendulum skate, a simple model of a figure skater developed by Gzenda and Putkaradze. We show that the upright spinning of the pendulum skate is stable under certain conditions, whereas the upright sliding equilibrium is always unstable. Using the matching condition, we derive a control law to stabilize the sliding equilibrium.
期刊介绍:
The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be.
All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.