{"title":"Controlled Lagrangians and Stabilization of Euler–Poincaré Equations with Symmetry Breaking Nonholonomic Constraints","authors":"Jorge S. Garcia, Tomoki Ohsawa","doi":"10.1007/s00332-024-10066-y","DOIUrl":null,"url":null,"abstract":"<p>We extend the method of controlled Lagrangians to nonholonomic Euler–Poincaré equations with advected parameters, specifically to those mechanical systems on Lie groups whose symmetry is broken not only by a potential force but also by nonholonomic constraints. We introduce advected-parameter-dependent quasivelocities in order to systematically eliminate the Lagrange multipliers in the nonholonomic Euler–Poincaré equations. The quasivelocities facilitate the method of controlled Lagrangians for these systems, and lead to matching conditions that are similar to those by Bloch, Leonard, and Marsden for the standard holonomic Euler–Poincaré equation. Our motivating example is what we call the pendulum skate, a simple model of a figure skater developed by Gzenda and Putkaradze. We show that the upright spinning of the pendulum skate is stable under certain conditions, whereas the upright sliding equilibrium is always unstable. Using the matching condition, we derive a control law to stabilize the sliding equilibrium.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10066-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We extend the method of controlled Lagrangians to nonholonomic Euler–Poincaré equations with advected parameters, specifically to those mechanical systems on Lie groups whose symmetry is broken not only by a potential force but also by nonholonomic constraints. We introduce advected-parameter-dependent quasivelocities in order to systematically eliminate the Lagrange multipliers in the nonholonomic Euler–Poincaré equations. The quasivelocities facilitate the method of controlled Lagrangians for these systems, and lead to matching conditions that are similar to those by Bloch, Leonard, and Marsden for the standard holonomic Euler–Poincaré equation. Our motivating example is what we call the pendulum skate, a simple model of a figure skater developed by Gzenda and Putkaradze. We show that the upright spinning of the pendulum skate is stable under certain conditions, whereas the upright sliding equilibrium is always unstable. Using the matching condition, we derive a control law to stabilize the sliding equilibrium.