Structure-preserving joint Lanczos bidiagonalization with thick-restart for the partial quaternion GSVD

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Zhe-Han Hu, Si-Tao Ling, Zhi-Gang Jia
{"title":"Structure-preserving joint Lanczos bidiagonalization with thick-restart for the partial quaternion GSVD","authors":"Zhe-Han Hu, Si-Tao Ling, Zhi-Gang Jia","doi":"10.1007/s11075-024-01900-1","DOIUrl":null,"url":null,"abstract":"<p>A new Krylov subspace method is designed in the computation of partial quaternion generalized singular value decomposition (QGSVD) of a large-scale quaternion matrix pair <span>\\(\\{\\textbf{A}, \\textbf{B}\\}\\)</span>. Explicitly, we present the structure-preserving joint Lanczos bidiagonalization method to reduce <span>\\(\\textbf{A}\\)</span> and <span>\\(\\textbf{B}\\)</span> to lower and upper real bidiagonal matrices, respectively. We carry out the thick-restarted technique with the combination of a robust selective reorthogonalization strategy in the structure-preserving joint Lanczos bidiagonalization process. In the iteration process we avoid performing the explicit QR decomposition of the quaternion matrix pair. Numerical experiments illustrate the effectiveness of the proposed method.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"77 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01900-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A new Krylov subspace method is designed in the computation of partial quaternion generalized singular value decomposition (QGSVD) of a large-scale quaternion matrix pair \(\{\textbf{A}, \textbf{B}\}\). Explicitly, we present the structure-preserving joint Lanczos bidiagonalization method to reduce \(\textbf{A}\) and \(\textbf{B}\) to lower and upper real bidiagonal matrices, respectively. We carry out the thick-restarted technique with the combination of a robust selective reorthogonalization strategy in the structure-preserving joint Lanczos bidiagonalization process. In the iteration process we avoid performing the explicit QR decomposition of the quaternion matrix pair. Numerical experiments illustrate the effectiveness of the proposed method.

Abstract Image

针对部分四元数 GSVD 的厚起始保结构联合兰克佐斯对角线化
在计算大规模四元矩阵对\(\{textbf{A}, \textbf{B}\})的部分四元广义奇异值分解(QGSVD)时,设计了一种新的克雷洛夫子空间方法。明确地说,我们提出了结构保留联合兰克索斯对角线化方法,将 \(\textbf{A}\) 和 \(\textbf{B}\) 分别还原为下实数和上实数对角矩阵。我们在结构保留的联合 Lanczos 二对角化过程中结合稳健的选择性重对角化策略来实现厚起始技术。在迭代过程中,我们避免对四元数矩阵对进行显式 QR 分解。数值实验证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信