{"title":"Structure-preserving joint Lanczos bidiagonalization with thick-restart for the partial quaternion GSVD","authors":"Zhe-Han Hu, Si-Tao Ling, Zhi-Gang Jia","doi":"10.1007/s11075-024-01900-1","DOIUrl":null,"url":null,"abstract":"<p>A new Krylov subspace method is designed in the computation of partial quaternion generalized singular value decomposition (QGSVD) of a large-scale quaternion matrix pair <span>\\(\\{\\textbf{A}, \\textbf{B}\\}\\)</span>. Explicitly, we present the structure-preserving joint Lanczos bidiagonalization method to reduce <span>\\(\\textbf{A}\\)</span> and <span>\\(\\textbf{B}\\)</span> to lower and upper real bidiagonal matrices, respectively. We carry out the thick-restarted technique with the combination of a robust selective reorthogonalization strategy in the structure-preserving joint Lanczos bidiagonalization process. In the iteration process we avoid performing the explicit QR decomposition of the quaternion matrix pair. Numerical experiments illustrate the effectiveness of the proposed method.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"77 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01900-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A new Krylov subspace method is designed in the computation of partial quaternion generalized singular value decomposition (QGSVD) of a large-scale quaternion matrix pair \(\{\textbf{A}, \textbf{B}\}\). Explicitly, we present the structure-preserving joint Lanczos bidiagonalization method to reduce \(\textbf{A}\) and \(\textbf{B}\) to lower and upper real bidiagonal matrices, respectively. We carry out the thick-restarted technique with the combination of a robust selective reorthogonalization strategy in the structure-preserving joint Lanczos bidiagonalization process. In the iteration process we avoid performing the explicit QR decomposition of the quaternion matrix pair. Numerical experiments illustrate the effectiveness of the proposed method.
期刊介绍:
The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.