Generalized weak Galerkin finite element method for linear elasticity interface problems

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Yue Wang, Fuzheng Gao
{"title":"Generalized weak Galerkin finite element method for linear elasticity interface problems","authors":"Yue Wang, Fuzheng Gao","doi":"10.1007/s11075-024-01904-x","DOIUrl":null,"url":null,"abstract":"<p>A generalized weak Galerkin finite element method for linear elasticity interface problems is presented. The generalized weak gradient (divergence) is consisted of classical gradient (divergence) and the solution of local problem. Thus, the finite element space can be extended to arbitrary combination of piecewise polynomial spaces. The error equation and error estimates are proved. The numerical results illustrate the efficiency and flexibility for different interfaces, partitions and combinations, the locking-free property, the well performance for low regularity solution in discrete energy, <span>\\(L^2\\)</span> and <span>\\(L^{\\infty }\\)</span> norms. Meanwhile, we present the numerical comparison between our algorithm and the weak Galerkin finite element algorithm to demonstrate the flexibility of our algorithm. In addition, for some cases, the convergence rates in numerical tests are obviously higher than the theoretical prediction for the smooth and low regularity solutions.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"44 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01904-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A generalized weak Galerkin finite element method for linear elasticity interface problems is presented. The generalized weak gradient (divergence) is consisted of classical gradient (divergence) and the solution of local problem. Thus, the finite element space can be extended to arbitrary combination of piecewise polynomial spaces. The error equation and error estimates are proved. The numerical results illustrate the efficiency and flexibility for different interfaces, partitions and combinations, the locking-free property, the well performance for low regularity solution in discrete energy, \(L^2\) and \(L^{\infty }\) norms. Meanwhile, we present the numerical comparison between our algorithm and the weak Galerkin finite element algorithm to demonstrate the flexibility of our algorithm. In addition, for some cases, the convergence rates in numerical tests are obviously higher than the theoretical prediction for the smooth and low regularity solutions.

Abstract Image

线性弹性界面问题的广义弱 Galerkin 有限元方法
介绍了线性弹性界面问题的广义弱 Galerkin 有限元方法。广义弱梯度(发散)由经典梯度(发散)和局部问题解组成。因此,有限元空间可以扩展到片断多项式空间的任意组合。证明了误差方程和误差估计。数值结果表明了不同界面、分区和组合的效率和灵活性、无锁定特性、离散能量、(L^2\)和(L^{\infty }\)规范下低正则性求解的良好性能。同时,我们给出了我们的算法与弱 Galerkin 有限元算法的数值比较,以证明我们算法的灵活性。此外,在某些情况下,对于平滑低正则解,数值试验的收敛速率明显高于理论预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信