{"title":"Global asymptotical stability and Hopf bifurcation for a three-species Lotka-Volterra food web model","authors":"Zhan-Ping Ma, Jin-Zuo Han","doi":"10.1002/mma.10376","DOIUrl":null,"url":null,"abstract":"<p>In this article, we consider a delayed three-species Lotka-Volterra food web model with diffusion and homogeneous Neumann boundary conditions. We proved that the positive constant equilibrium solution is globally asymptotically stable for the system without time delays. By virtue of the sum of time delays as the bifurcation parameter, spatially homogeneous and inhomogeneous Hopf bifurcation at the positive constant equilibrium solution are proved to occur when the delay varied through a sequence of critical values. In addition, we consider the effect of cross-diffusion on the system in the case that without time delays. By taking cross diffusion coefficients as the bifurcation parameter, our model undergoes inhomogeneous Hopf bifurcation around a positive constant equilibrium solution when the bifurcation parameter is varied through a sequence of critical values. A common feature in the most existing research work is that the bifurcation factor that induces Hopf bifurcation appears in the reaction terms (such as time delay) rather than diffusion terms. Our results demonstrate that the inhomogeneous Hopf bifurcation can be triggered by the effect of cross diffusion factors.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 1","pages":"1142-1162"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10376","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we consider a delayed three-species Lotka-Volterra food web model with diffusion and homogeneous Neumann boundary conditions. We proved that the positive constant equilibrium solution is globally asymptotically stable for the system without time delays. By virtue of the sum of time delays as the bifurcation parameter, spatially homogeneous and inhomogeneous Hopf bifurcation at the positive constant equilibrium solution are proved to occur when the delay varied through a sequence of critical values. In addition, we consider the effect of cross-diffusion on the system in the case that without time delays. By taking cross diffusion coefficients as the bifurcation parameter, our model undergoes inhomogeneous Hopf bifurcation around a positive constant equilibrium solution when the bifurcation parameter is varied through a sequence of critical values. A common feature in the most existing research work is that the bifurcation factor that induces Hopf bifurcation appears in the reaction terms (such as time delay) rather than diffusion terms. Our results demonstrate that the inhomogeneous Hopf bifurcation can be triggered by the effect of cross diffusion factors.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.