Patterns in soil organic carbon dynamics: integrating microbial activity, chemotaxis and data-driven approaches

Angela Monti, Fasma Diele, Deborah Lacitignola, Carmela Marangi
{"title":"Patterns in soil organic carbon dynamics: integrating microbial activity, chemotaxis and data-driven approaches","authors":"Angela Monti, Fasma Diele, Deborah Lacitignola, Carmela Marangi","doi":"arxiv-2407.20625","DOIUrl":null,"url":null,"abstract":"Models of soil organic carbon (SOC) frequently overlook the effects of\nspatial dimensions and microbiological activities. In this paper, we focus on\ntwo reaction-diffusion chemotaxis models for SOC dynamics, both supporting\nchemotaxis-driven instability and exhibiting a variety of spatial patterns as\nstripes, spots and hexagons when the microbial chemotactic sensitivity is above\na critical threshold. We use symplectic techniques to numerically approximate\nchemotaxis-driven spatial patterns and explore the effectiveness of the\npiecewice dynamic mode decomposition (pDMD) to reconstruct them. Our findings\nshow that pDMD is effective at precisely recreating chemotaxis-driven spatial\npatterns, therefore broadening the range of application of the method to\nclasses of solutions different than Turing patterns. By validating its efficacy\nacross a wider range of models, this research lays the groundwork for applying\npDMD to experimental spatiotemporal data, advancing predictions crucial for\nsoil microbial ecology and agricultural sustainability.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Models of soil organic carbon (SOC) frequently overlook the effects of spatial dimensions and microbiological activities. In this paper, we focus on two reaction-diffusion chemotaxis models for SOC dynamics, both supporting chemotaxis-driven instability and exhibiting a variety of spatial patterns as stripes, spots and hexagons when the microbial chemotactic sensitivity is above a critical threshold. We use symplectic techniques to numerically approximate chemotaxis-driven spatial patterns and explore the effectiveness of the piecewice dynamic mode decomposition (pDMD) to reconstruct them. Our findings show that pDMD is effective at precisely recreating chemotaxis-driven spatial patterns, therefore broadening the range of application of the method to classes of solutions different than Turing patterns. By validating its efficacy across a wider range of models, this research lays the groundwork for applying pDMD to experimental spatiotemporal data, advancing predictions crucial for soil microbial ecology and agricultural sustainability.
土壤有机碳动态模式:综合微生物活动、趋化性和数据驱动方法
土壤有机碳(SOC)模型经常忽略空间维度和微生物活动的影响。在本文中,我们重点研究了两种用于 SOC 动力学的反应扩散趋化模型,这两种模型都支持趋化驱动的不稳定性,并在微生物趋化灵敏度高于临界阈值时表现出多种空间模式,如条状、点状和六边形。我们利用交折射技术对趋化驱动的空间模式进行了数值近似,并探索了片断动态模式分解(pDMD)重建空间模式的有效性。我们的研究结果表明,pDMD 能够有效地精确再现趋化驱动的空间模式,从而拓宽了该方法的应用范围,使其适用于图灵模式以外的各类解决方案。通过在更广泛的模型中验证其有效性,这项研究为将 pDMD 应用于实验性时空数据奠定了基础,从而推进了对土壤微生物生态学和农业可持续发展至关重要的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信