Bayesian uncertainty quantification on nuclear level-density data and their impact on (p,γ) reactions of astrophysical interest

IF 3.1 2区 物理与天体物理 Q1 Physics and Astronomy
A. Chalil, C. Ducoin, O. Stézowski, N. Millard-Pinard, J. Dudouet, Y. Demane, M. Chamseddine
{"title":"Bayesian uncertainty quantification on nuclear level-density data and their impact on (p,γ) reactions of astrophysical interest","authors":"A. Chalil, C. Ducoin, O. Stézowski, N. Millard-Pinard, J. Dudouet, Y. Demane, M. Chamseddine","doi":"10.1103/physrevc.110.024602","DOIUrl":null,"url":null,"abstract":"The <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> process nucleosynthesis is responsible for the synthesis of 35 neutron-deficient nuclei from <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Se</mi><mprescripts></mprescripts><none></none><mn>35</mn></mmultiscripts></math> to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Hg</mi><mprescripts></mprescripts><none></none><mn>196</mn></mmultiscripts></math>. An important input that can affect the modeling of this process is the nuclear level density at the relevant excitation energies of the nuclei involved in the reaction network. The <span>oslo</span> method has been extensively used for the measurement of level densities in excitation energies of several MeV. In this work, Bayesian optimization has been used in order to estimate the 95% credible intervals for the parameters of two level-density models optimized on the <span>oslo</span> data. These uncertainties are then propagated on the cross sections of (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>p</mi><mo>,</mo><mi>γ</mi></mrow></math>) reactions leading to the compound nuclei <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Pd</mi><mprescripts></mprescripts><none></none><mrow><mn>105</mn><mo>,</mo><mn>106</mn></mrow></mmultiscripts></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Cd</mi><mprescripts></mprescripts><none></none><mrow><mn>105</mn><mo>,</mo><mn>106</mn></mrow></mmultiscripts></math> inside the astrophysically relevant energy range. Imposing constraints in this region of the isotopic chart is important for network calculations involving the nearby <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> nuclei <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Pd</mi><mprescripts></mprescripts><none></none><mn>102</mn></mmultiscripts></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Cd</mi><mprescripts></mprescripts><none></none><mn>106</mn></mmultiscripts></math>. We discuss the reduction of the range of cross sections due to the uncertainties arising from the level-density data compared to the range of the six default level-density models available in <span>talys</span> and we highlight the need for level-density data inside the astrophysically relevant energy ranges.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":"89 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.110.024602","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The p process nucleosynthesis is responsible for the synthesis of 35 neutron-deficient nuclei from Se35 to Hg196. An important input that can affect the modeling of this process is the nuclear level density at the relevant excitation energies of the nuclei involved in the reaction network. The oslo method has been extensively used for the measurement of level densities in excitation energies of several MeV. In this work, Bayesian optimization has been used in order to estimate the 95% credible intervals for the parameters of two level-density models optimized on the oslo data. These uncertainties are then propagated on the cross sections of (p,γ) reactions leading to the compound nuclei Pd105,106 and Cd105,106 inside the astrophysically relevant energy range. Imposing constraints in this region of the isotopic chart is important for network calculations involving the nearby p nuclei Pd102 and Cd106. We discuss the reduction of the range of cross sections due to the uncertainties arising from the level-density data compared to the range of the six default level-density models available in talys and we highlight the need for level-density data inside the astrophysically relevant energy ranges.

Abstract Image

核级密度数据的贝叶斯不确定性量化及其对具有天体物理学意义的(p,γ)反应的影响
p 过程核合成负责合成从 Se35 到 Hg196 的 35 个缺中子原子核。影响这一过程建模的一个重要输入是参与反应网络的原子核在相关激发能量下的核级密度。奥斯陆方法已被广泛用于测量几 MeV 激发能量下的核级密度。在这项工作中,使用了贝叶斯优化法来估计根据奥斯陆数据优化的两个能级密度模型参数的 95% 可信区间。然后将这些不确定性传播到天体物理学相关能量范围内导致 Pd105,106 和 Cd105,106 复合核的(p,γ)反应截面上。在同位素图的这一区域施加约束对于涉及附近 p 核 Pd102 和 Cd106 的网络计算非常重要。我们讨论了与 talys 中可用的六个默认水平密度模型的范围相比,由于水平密度数据引起的不确定性而导致的截面范围的缩小,并强调了在天体物理学相关能量范围内对水平密度数据的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review C
Physical Review C 物理-物理:核物理
CiteScore
5.70
自引率
35.50%
发文量
0
审稿时长
1-2 weeks
期刊介绍: Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field. PRC covers experimental and theoretical results in all aspects of nuclear physics, including: Nucleon-nucleon interaction, few-body systems Nuclear structure Nuclear reactions Relativistic nuclear collisions Hadronic physics and QCD Electroweak interaction, symmetries Nuclear astrophysics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信