{"title":"Forecasting sovereign CDS spreads with a regime-switching combination method","authors":"Jianping Li, Qianqian Feng, Jun Hao, Xiaolei Sun","doi":"10.1002/for.3174","DOIUrl":null,"url":null,"abstract":"<p>With the growing importance of the sovereign credit default swap (CDS) market, accurate forecasting of sovereign CDS spreads has gained significant attention. In view of the complex volatility in the series of sovereign CDS spreads, this study presents a novel combination forecasting framework, which introduces time-varying weights to effectively combine diverse individual models. To identify optimal subsets of models, a mutual information approach is employed, while the regime-switching method is utilized to integrate the selected models. The proposed method's efficacy is validated using data from 65 countries. Empirical findings underscore the superiority of the proposed approach over benchmark models in terms of both horizontal and directional prediction accuracy, particularly when the sovereign CDS data exhibits a balanced distribution between high and low volatility regimes.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3174","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
With the growing importance of the sovereign credit default swap (CDS) market, accurate forecasting of sovereign CDS spreads has gained significant attention. In view of the complex volatility in the series of sovereign CDS spreads, this study presents a novel combination forecasting framework, which introduces time-varying weights to effectively combine diverse individual models. To identify optimal subsets of models, a mutual information approach is employed, while the regime-switching method is utilized to integrate the selected models. The proposed method's efficacy is validated using data from 65 countries. Empirical findings underscore the superiority of the proposed approach over benchmark models in terms of both horizontal and directional prediction accuracy, particularly when the sovereign CDS data exhibits a balanced distribution between high and low volatility regimes.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.