On asymptotics of Robin eigenvalues in the Dirichlet limit

Roberto Ognibene
{"title":"On asymptotics of Robin eigenvalues in the Dirichlet limit","authors":"Roberto Ognibene","doi":"arxiv-2407.19505","DOIUrl":null,"url":null,"abstract":"We investigate the asymptotic behavior of the eigenvalues of the Laplacian\nwith homogeneous Robin boundary conditions, when the (positive) Robin parameter\nis diverging. In this framework, since the convergence of the Robin eigenvalues\nto the Dirichlet ones is known, we address the question of quantifying the rate\nof such convergence. More precisely, in this work we identify the proper\ngeometric quantity representing (asymptotically) the first term in the\nexpansion of the eigenvalue variation: it is a novel notion of torsional\nrigidity. Then, by performing a suitable asymptotic analysis of both such\nquantity and its minimizer, we prove the first-order expansion of any Robin\neigenvalue, in the Dirichlet limit. Moreover, the convergence rate of the\ncorresponding eigenfunctions is obtained as well. We remark that all our\nspectral estimates are explicit and sharp, and cover both the cases of\nconvergence to simple and multiple Dirichlet eigenvalues.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the asymptotic behavior of the eigenvalues of the Laplacian with homogeneous Robin boundary conditions, when the (positive) Robin parameter is diverging. In this framework, since the convergence of the Robin eigenvalues to the Dirichlet ones is known, we address the question of quantifying the rate of such convergence. More precisely, in this work we identify the proper geometric quantity representing (asymptotically) the first term in the expansion of the eigenvalue variation: it is a novel notion of torsional rigidity. Then, by performing a suitable asymptotic analysis of both such quantity and its minimizer, we prove the first-order expansion of any Robin eigenvalue, in the Dirichlet limit. Moreover, the convergence rate of the corresponding eigenfunctions is obtained as well. We remark that all our spectral estimates are explicit and sharp, and cover both the cases of convergence to simple and multiple Dirichlet eigenvalues.
论迪里希特极限中罗宾特征值的渐近性
我们研究了具有同质罗宾边界条件的拉普拉斯特征值在(正)罗宾参数发散时的渐近行为。在此框架下,由于已知罗宾特征值收敛于狄利克特特征值,我们解决了量化这种收敛速度的问题。更确切地说,在这项工作中,我们确定了代表(渐近地)特征值变化展开式中第一项的适当几何量:这是一个新颖的扭转刚性概念。然后,通过对该量及其最小值进行适当的渐近分析,我们证明了任何罗宾特征值在迪里希特极限中的一阶展开。此外,我们还得到了相应特征函数的收敛速率。我们指出,我们所有的谱估计都是明确而尖锐的,并且涵盖了收敛到简单和多重 Dirichlet 特征值的两种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信