Hearing the shape of a drum by knocking around

Xing Wang, Emmett L. Wyman, Yakun Xi
{"title":"Hearing the shape of a drum by knocking around","authors":"Xing Wang, Emmett L. Wyman, Yakun Xi","doi":"arxiv-2407.18797","DOIUrl":null,"url":null,"abstract":"We study a variation of Kac's question, \"Can one hear the shape of a drum?\"\nif we allow ourselves access to some additional information. In particular, we\nallow ourselves to ``hear\" the local Weyl counting function at each point on\nthe manifold and ask if this is enough to uniquely recover the Riemannian\nmetric. This is physically equivalent to asking whether one can determine the\nshape of a drum if one is allowed to knock at any place on the drum. We show\nthat the answer to this question is ``yes\" provided the Laplace-Beltrami\nspectrum of the drum is simple. We also provide a counterexample illustrating\nwhy this hypothesis is necessary.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a variation of Kac's question, "Can one hear the shape of a drum?" if we allow ourselves access to some additional information. In particular, we allow ourselves to ``hear" the local Weyl counting function at each point on the manifold and ask if this is enough to uniquely recover the Riemannian metric. This is physically equivalent to asking whether one can determine the shape of a drum if one is allowed to knock at any place on the drum. We show that the answer to this question is ``yes" provided the Laplace-Beltrami spectrum of the drum is simple. We also provide a counterexample illustrating why this hypothesis is necessary.
敲敲打打听鼓声
我们研究了卡氏问题的一个变体:"如果我们允许自己获取一些额外的信息,人们能听到鼓的形状吗?特别是,我们允许自己 "听到 "流形上每一点的局部韦尔计数函数,并询问这是否足以唯一地恢复黎曼度量。这在物理上等同于问,如果允许在鼓上的任何地方敲击,能否确定鼓的形状。我们证明,只要鼓的拉普拉斯-贝尔特拉姆谱是简单的,这个问题的答案就是 "是"。我们还提供了一个反例,说明为什么这个假设是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信