The restricted discrete Fourier transform

W. Riley Casper, Milen Yakimov
{"title":"The restricted discrete Fourier transform","authors":"W. Riley Casper, Milen Yakimov","doi":"arxiv-2407.20379","DOIUrl":null,"url":null,"abstract":"We investigate the restriction of the discrete Fourier transform $F_N :\nL^2(\\mathbb{Z}/N \\mathbb{Z}) \\to L^2(\\mathbb{Z}/N \\mathbb{Z})$ to the space\n$\\mathcal C_a$ of functions with support on the discrete interval $[-a,a]$,\nwhose transforms are supported inside the same interval. A periodically\ntridiagonal matrix $J$ on $L^2(\\mathbb{Z}/N \\mathbb{Z})$ is constructed having\nthe three properties that it commutes with $F_N$, has eigenspaces of dimensions\n1 and 2 only, and the span of its eigenspaces of dimension 1 is precisely\n$\\mathcal C_a$. The simple eigenspaces of $J$ provide an orthonormal eigenbasis\nof the restriction of $F_N$ to $\\mathcal C_a$. The dimension 2 eigenspaces of\n$J$ have canonical basis elements supported on $[-a,a]$ and its complement.\nThese bases give an interpolation formula for reconstructing $f(x)\\in\nL^2(\\mathbb{Z}/N\\mathbb{Z})$ from the values of $f(x)$ and $\\widehat f(x)$ on\n$[-a,a]$, i.e., an explicit Fourier uniqueness pair interpolation formula. The\ncoefficients of the interpolation formula are expressed in terms of theta\nfunctions. Lastly, we construct an explicit basis of $\\mathcal C_a$ having\nextremal support and leverage it to obtain explicit formulas for eigenfunctions\nof $F_N$ in $C_a$ when $\\dim \\mathcal C_a \\leq 4$.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"166 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the restriction of the discrete Fourier transform $F_N : L^2(\mathbb{Z}/N \mathbb{Z}) \to L^2(\mathbb{Z}/N \mathbb{Z})$ to the space $\mathcal C_a$ of functions with support on the discrete interval $[-a,a]$, whose transforms are supported inside the same interval. A periodically tridiagonal matrix $J$ on $L^2(\mathbb{Z}/N \mathbb{Z})$ is constructed having the three properties that it commutes with $F_N$, has eigenspaces of dimensions 1 and 2 only, and the span of its eigenspaces of dimension 1 is precisely $\mathcal C_a$. The simple eigenspaces of $J$ provide an orthonormal eigenbasis of the restriction of $F_N$ to $\mathcal C_a$. The dimension 2 eigenspaces of $J$ have canonical basis elements supported on $[-a,a]$ and its complement. These bases give an interpolation formula for reconstructing $f(x)\in L^2(\mathbb{Z}/N\mathbb{Z})$ from the values of $f(x)$ and $\widehat f(x)$ on $[-a,a]$, i.e., an explicit Fourier uniqueness pair interpolation formula. The coefficients of the interpolation formula are expressed in terms of theta functions. Lastly, we construct an explicit basis of $\mathcal C_a$ having extremal support and leverage it to obtain explicit formulas for eigenfunctions of $F_N$ in $C_a$ when $\dim \mathcal C_a \leq 4$.
受限离散傅立叶变换
我们研究了离散傅立叶变换 $F_N :L^2(\mathbb{Z}/N \mathbb{Z}) \to L^2(\mathbb{Z}/N \mathbb{Z})$ 对离散区间 $[-a,a]$ 上有支持的函数空间 $mathcal C_a$的限制,这些函数的变换在同一区间内有支持。在$L^2(\mathbb{Z}/N \mathbb{Z})$上构造了一个周期对角矩阵$J$,它具有三个性质:与$F_N$相乘、只有维数1和维数2的特征空间、维数1的特征空间的跨恰好是$\mathcal C_a$。$J$ 的简单特征空间为 $F_N$ 对 $mathcal C_a$ 的限制提供了一个正交特征基础。这些基给出了从 $f(x)$ 和 $\widehat f(x)$ 在 $[-a,a]$ 上的值重建 $f(x)\inL^2(\mathbb{Z}/N\mathbb{Z})$ 的插值公式,即明确的傅里叶唯一性对插值公式。插值公式的系数用θ函数表示。最后,我们构建了一个具有极值支持的$\mathcal C_a$ 的显式基,并利用它得到了当$\dim \mathcal C_a \leq 4$时$C_a$中$F_N$的特征函数的显式公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信