Distribution of telecom entangled photons through a 7.7 km antiresonant hollow-core fiber

Michael Antesberger, Carla M. D. Richter, Francesco Poletti, Radan Slavík, Periklis Petropoulos, Hannes Hübel, Alessandro Trenti, Philip Walther, Lee A. Rozema
{"title":"Distribution of telecom entangled photons through a 7.7 km antiresonant hollow-core fiber","authors":"Michael Antesberger, Carla M. D. Richter, Francesco Poletti, Radan Slavík, Periklis Petropoulos, Hannes Hübel, Alessandro Trenti, Philip Walther, Lee A. Rozema","doi":"10.1364/opticaq.514257","DOIUrl":null,"url":null,"abstract":"State of the art classical and quantum communications rely on standard optical fibers with solid cores to transmit light over long distances. However, recent advances have led to the emergence of antiresonant hollow-core optical fibers (AR-HCFs), which, due to the novel fiber geometry, show remarkable optical guiding properties, which are not as limited by the material properties as solid-core fibers. In this paper, we explore the transmission of entangled photons through a novel 7.7 km AR-HCF in a laboratory environment at 1550 nm, presenting the first successful demonstration of entanglement distribution via a long AR-HCF. In addition to showing these novel fibers are compatible with long distance quantum communication, we highlight the low latency and low chromatic dispersion intrinsic to AR-HCF, which can increase the secure key rate in time-bin-based quantum key distribution protocols.","PeriodicalId":501828,"journal":{"name":"Optica Quantum","volume":"151 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/opticaq.514257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

State of the art classical and quantum communications rely on standard optical fibers with solid cores to transmit light over long distances. However, recent advances have led to the emergence of antiresonant hollow-core optical fibers (AR-HCFs), which, due to the novel fiber geometry, show remarkable optical guiding properties, which are not as limited by the material properties as solid-core fibers. In this paper, we explore the transmission of entangled photons through a novel 7.7 km AR-HCF in a laboratory environment at 1550 nm, presenting the first successful demonstration of entanglement distribution via a long AR-HCF. In addition to showing these novel fibers are compatible with long distance quantum communication, we highlight the low latency and low chromatic dispersion intrinsic to AR-HCF, which can increase the secure key rate in time-bin-based quantum key distribution protocols.
电信纠缠光子在 7.7 千米反谐振空芯光纤中的分布
最先进的经典通信和量子通信都依靠标准的实芯光纤进行长距离传输。然而,最近的进步导致了反谐振空芯光纤(AR-HCF)的出现,这种光纤因其新颖的几何形状而显示出显著的光导特性,不像实芯光纤那样受材料特性的限制。在本文中,我们在实验室环境中探索了纠缠光子在 1550 nm 波长下通过新型 7.7 km AR-HCF 的传输,首次成功展示了纠缠光子通过长 AR-HCF 的分布。除了证明这些新型光纤与长距离量子通信兼容之外,我们还强调了 AR-HCF 固有的低延迟和低色度色散特性,这可以提高基于时间分段的量子密钥分发协议中的安全密钥速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信