On the functor of comonotonically maxitive functionals

Taras Radul
{"title":"On the functor of comonotonically maxitive functionals","authors":"Taras Radul","doi":"arxiv-2407.18345","DOIUrl":null,"url":null,"abstract":"We introduce a functor of functionals which preserve maximum of comonotone\nfunctions and addition of constants. This functor is a subfunctor of the\nfunctor of order-preserving functionals and contains the idempotent measure\nfunctor as subfunctor. The main aim of this paper is to show that this functor\nis isomorphic to the capacity functor. We establish such isomorphism using the\nfuzzy max-plus integral. In fact, we can consider this result as an idempotent\nanalogue of Riesz Theorem about a correspondence between the set of\n$\\sigma$-additive regular Borel measures and the set of linear positively\ndefined functionals.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a functor of functionals which preserve maximum of comonotone functions and addition of constants. This functor is a subfunctor of the functor of order-preserving functionals and contains the idempotent measure functor as subfunctor. The main aim of this paper is to show that this functor is isomorphic to the capacity functor. We establish such isomorphism using the fuzzy max-plus integral. In fact, we can consider this result as an idempotent analogue of Riesz Theorem about a correspondence between the set of $\sigma$-additive regular Borel measures and the set of linear positively defined functionals.
论最大单调函数的函子
我们引入了一个保留最大逗号函数和常量加法的函数函子。这个函子是保序函子的一个子函子,包含作为子函子的幂等度量函子。本文的主要目的是证明这个函子与容量函子同构。我们利用富集最大加积分来建立这种同构性。事实上,我们可以把这一结果看作是关于$\sigma$-additive regular Borel measures集合与线性正定函数集合之间对应关系的里兹定理的等效对应物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信