Characterizing function spaces which have the property (B) of Banakh

Mikołaj Krupski, Kacper Kucharski, Witold Marciszewski
{"title":"Characterizing function spaces which have the property (B) of Banakh","authors":"Mikołaj Krupski, Kacper Kucharski, Witold Marciszewski","doi":"arxiv-2407.18618","DOIUrl":null,"url":null,"abstract":"A topological space $Y$ has the property (B) of Banakh if there is a\ncountable family $\\{A_n:n\\in \\mathbb{N}\\}$ of closed nowhere dense subsets of\n$Y$ absorbing all compact subsets of $Y$. In this note we show that the space\n$C_p(X)$ of continuous real-valued functions on a Tychonoff space $X$ with the\ntopology of pointwise convergence, fails to satisfy the property (B) if and\nonly if the space $X$ has the following property $(\\kappa)$: every sequence of\ndisjoint finite subsets of $X$ has a subsequence with point--finite open\nexpansion. Additionally, we provide an analogous characterization for the\ncompact--open topology on $C(X)$. Finally, we give examples of Tychonoff spaces\n$X$ whose all bounded subsets are finite, yet $X$ fails to have the property\n$(\\kappa)$. This answers a question of Tkachuk.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A topological space $Y$ has the property (B) of Banakh if there is a countable family $\{A_n:n\in \mathbb{N}\}$ of closed nowhere dense subsets of $Y$ absorbing all compact subsets of $Y$. In this note we show that the space $C_p(X)$ of continuous real-valued functions on a Tychonoff space $X$ with the topology of pointwise convergence, fails to satisfy the property (B) if and only if the space $X$ has the following property $(\kappa)$: every sequence of disjoint finite subsets of $X$ has a subsequence with point--finite open expansion. Additionally, we provide an analogous characterization for the compact--open topology on $C(X)$. Finally, we give examples of Tychonoff spaces $X$ whose all bounded subsets are finite, yet $X$ fails to have the property $(\kappa)$. This answers a question of Tkachuk.
表征具有 Banakh 属性 (B) 的函数空间
如果存在$Y$的无处封闭的密集子集的可计算族$\{A_n:nin \mathbb{N}\}$,且该族吸收了$Y$的所有紧凑子集,则拓扑空间$Y$具有巴纳赫性质(B)。在本注释中,我们证明了在具有点收敛拓扑的泰克诺夫空间$X$上的连续实值函数空间$C_p(X)$不满足性质(B),当且仅当空间$X$具有以下性质$(\kappa)$时:$X$的每个不相交有限子集序列都有一个具有点无限开展开的子序列。此外,我们还为$C(X)$上的紧凑-开放拓扑提供了类似的性质。最后,我们举例说明了Tychonoff空间$X$的所有有界子集都是有限的,但$X$却不具有(\kappa)$性质。这回答了特卡丘克的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信