On some recent selective properties involving networks

Maddalena Bonanzinga, Davide Giacopello, Santi Spadaro, Lyubomyr Zdomskyy
{"title":"On some recent selective properties involving networks","authors":"Maddalena Bonanzinga, Davide Giacopello, Santi Spadaro, Lyubomyr Zdomskyy","doi":"arxiv-2407.18713","DOIUrl":null,"url":null,"abstract":"In this paper we investigate R-,H-, and M-{\\it nw}-selective properties\nintroduced in \\cite{BG}. In particular, we provide consistent uncountable\nexamples of such spaces and we define \\textit{trivial} R-,H-, and M-{\\it\nnw}-selective spaces the ones with countable net weight having, additionally,\nthe cardinality and the weight strictly less then $cov({\\cal M})$, $\\frak b$,\nand $\\frak d$, respectively. Since we establish that spaces having\ncardinalities more than $cov({\\cal M})$, $\\frak b$, and $\\frak d$, fail to have\nthe R-,H-, and M-{\\it nw}-selective properties, respectively, non-trivial\nexamples should eventually have weight greater than or equal to these small\ncardinals. Using forcing methods, we construct consistent countable non-trivial\nexamples of R-{\\it nw}-selective and H-{\\it nw}-selective spaces and we\nestablish some limitations to constructions of non-trivial examples. Moreover,\nwe consistently prove the existence of two H-{\\it nw}-selective spaces whose\nproduct fails to be M-{\\it nw}-selective. Finally, we study some relations\nbetween {\\it nw}-selective properties and a strong version of the HFD property.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we investigate R-,H-, and M-{\it nw}-selective properties introduced in \cite{BG}. In particular, we provide consistent uncountable examples of such spaces and we define \textit{trivial} R-,H-, and M-{\it nw}-selective spaces the ones with countable net weight having, additionally, the cardinality and the weight strictly less then $cov({\cal M})$, $\frak b$, and $\frak d$, respectively. Since we establish that spaces having cardinalities more than $cov({\cal M})$, $\frak b$, and $\frak d$, fail to have the R-,H-, and M-{\it nw}-selective properties, respectively, non-trivial examples should eventually have weight greater than or equal to these small cardinals. Using forcing methods, we construct consistent countable non-trivial examples of R-{\it nw}-selective and H-{\it nw}-selective spaces and we establish some limitations to constructions of non-trivial examples. Moreover, we consistently prove the existence of two H-{\it nw}-selective spaces whose product fails to be M-{\it nw}-selective. Finally, we study some relations between {\it nw}-selective properties and a strong version of the HFD property.
关于最近涉及网络的一些选择性特性
在本文中,我们研究了R-、H-和M-{it nw}中引入的选择性质。特别是,我们提供了这类空间的一致的不可数的例子,并定义了 "textit{trivial}"。R-、H-和M-{it/nw}-选择空间是指具有可数净重的空间,它们的心性和净重分别严格小于$cov({\cal M})$、$\frak b$和$\frak d$。由于我们确定了具有大于$cov({\cal M})$、$\frak b$和$\frak d$的心数的空间不能分别具有R-、H-和M-{it nw}-选择性质,所以非难例最终应该具有大于或等于这些小心数的权重。利用强迫方法,我们构造了R-{it nw}选择性空间和H-{it nw}选择性空间的一致可数非难例,并建立了对非难例构造的一些限制。此外,我们还证明了存在两个H-{it nw}选择性空间,它们的乘积不具有M-{it nw}选择性。最后,我们研究了{it nw}选择性性质与强版本的HFD性质之间的一些关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信