Li‐Ying Hao, Xin Yang, Yu‐Qing Zhang, Hudayberenov Atajan, Yanli Liu
{"title":"Fault‐tolerant control of unmanned marine vehicles with unknown parametric dynamics via integral sliding mode output feedback control","authors":"Li‐Ying Hao, Xin Yang, Yu‐Qing Zhang, Hudayberenov Atajan, Yanli Liu","doi":"10.1002/asjc.3475","DOIUrl":null,"url":null,"abstract":"This paper focuses on fault‐tolerant control (FTC) for unmanned marine vehicles (UMVs) subject to unknown parametric dynamics, thruster faults, and external disturbances. A novel FTC strategy based on the integral sliding mode output feedback method is proposed. Based on a high gain compensator and output information, a novel integral sliding mode fault‐tolerant controller is constructed to guarantee the dynamic positioning (DP) of UMVs. An attraction region that is related to the known positive constants with respect to dynamic uncertainties has been revealed for the first time. Finally, the closed‐loop stability can be guaranteed from the every initial time in despite of unknown parametric dynamics, thruster faults, and external disturbances. Simulation though a typical floating production ship model has verified the effectiveness of the proposed method.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"74 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/asjc.3475","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on fault‐tolerant control (FTC) for unmanned marine vehicles (UMVs) subject to unknown parametric dynamics, thruster faults, and external disturbances. A novel FTC strategy based on the integral sliding mode output feedback method is proposed. Based on a high gain compensator and output information, a novel integral sliding mode fault‐tolerant controller is constructed to guarantee the dynamic positioning (DP) of UMVs. An attraction region that is related to the known positive constants with respect to dynamic uncertainties has been revealed for the first time. Finally, the closed‐loop stability can be guaranteed from the every initial time in despite of unknown parametric dynamics, thruster faults, and external disturbances. Simulation though a typical floating production ship model has verified the effectiveness of the proposed method.
期刊介绍:
The Asian Journal of Control, an Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) affiliated journal, is the first international journal originating from the Asia Pacific region. The Asian Journal of Control publishes papers on original theoretical and practical research and developments in the areas of control, involving all facets of control theory and its application.
Published six times a year, the Journal aims to be a key platform for control communities throughout the world.
The Journal provides a forum where control researchers and practitioners can exchange knowledge and experiences on the latest advances in the control areas, and plays an educational role for students and experienced researchers in other disciplines interested in this continually growing field. The scope of the journal is extensive.
Topics include:
The theory and design of control systems and components, encompassing:
Robust and distributed control using geometric, optimal, stochastic and nonlinear methods
Game theory and state estimation
Adaptive control, including neural networks, learning, parameter estimation
and system fault detection
Artificial intelligence, fuzzy and expert systems
Hierarchical and man-machine systems
All parts of systems engineering which consider the reliability of components and systems
Emerging application areas, such as:
Robotics
Mechatronics
Computers for computer-aided design, manufacturing, and control of
various industrial processes
Space vehicles and aircraft, ships, and traffic
Biomedical systems
National economies
Power systems
Agriculture
Natural resources.