Elastic flow of curves with partial free boundary

Antonia Diana
{"title":"Elastic flow of curves with partial free boundary","authors":"Antonia Diana","doi":"10.1007/s00030-024-00984-x","DOIUrl":null,"url":null,"abstract":"<p>We consider a curve with boundary points free to move on a line in <span>\\({{{\\mathbb {R}}}}^2\\)</span>, which evolves by the <span>\\(L^2\\)</span>-gradient flow of the elastic energy, that is, a linear combination of the Willmore and the length functional. For this planar evolution problem, we study the short and long-time existence. Once we establish under which boundary conditions the PDE’s system is well-posed (in our case the Navier boundary conditions), employing the Solonnikov theory for linear parabolic systems in Hölder space, we show that there exists a unique flow in a maximal time interval [0, <i>T</i>). Then, using energy methods we prove that the maximal time is <span>\\(T= + \\infty \\)</span>.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"160 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00984-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a curve with boundary points free to move on a line in \({{{\mathbb {R}}}}^2\), which evolves by the \(L^2\)-gradient flow of the elastic energy, that is, a linear combination of the Willmore and the length functional. For this planar evolution problem, we study the short and long-time existence. Once we establish under which boundary conditions the PDE’s system is well-posed (in our case the Navier boundary conditions), employing the Solonnikov theory for linear parabolic systems in Hölder space, we show that there exists a unique flow in a maximal time interval [0, T). Then, using energy methods we prove that the maximal time is \(T= + \infty \).

部分自由边界曲线的弹性流动
我们考虑一条边界点可在 \({{\mathbb {R}}}}^2\) 中的直线上自由移动的曲线,它通过弹性能量的 \(L^2\)- 梯度流(即威尔莫尔函数和长度函数的线性组合)演化。对于这个平面演化问题,我们研究了其短时和长时存在性。一旦我们利用霍尔德空间线性抛物线系统的索隆尼科夫理论,确定了 PDE 系统在哪些边界条件下(在我们的案例中是纳维边界条件)是好求解的,我们就能证明在最大时间区间 [0, T) 中存在唯一的流。然后,我们用能量方法证明最大时间是 \(T= + \infty \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信