Víctor Ayala, Adriano Da Silva, Anderson F. P. Rojas
{"title":"Control sets of linear control systems on $$\\mathbb {R}^2$$ . The real case","authors":"Víctor Ayala, Adriano Da Silva, Anderson F. P. Rojas","doi":"10.1007/s00030-024-00987-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the dynamical behavior of a linear control system on <span>\\(\\mathbb {R}^2\\)</span> when the associated matrix has real eigenvalues. Different from the complex case, we show that the position of the control zero relative to the control range can have a strong interference in such dynamics if the matrix is not invertible. In the invertible case, we explicitly construct the unique control set with a nonempty interior.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00987-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the dynamical behavior of a linear control system on \(\mathbb {R}^2\) when the associated matrix has real eigenvalues. Different from the complex case, we show that the position of the control zero relative to the control range can have a strong interference in such dynamics if the matrix is not invertible. In the invertible case, we explicitly construct the unique control set with a nonempty interior.