Reconstruction of schemes from their étale topoi

Magnus Carlson, Peter J. Haine, Sebastian Wolf
{"title":"Reconstruction of schemes from their étale topoi","authors":"Magnus Carlson, Peter J. Haine, Sebastian Wolf","doi":"arxiv-2407.19920","DOIUrl":null,"url":null,"abstract":"Let $k$ be a field that is finitely generated over its prime field. In\nGrothendieck's anabelian letter to Faltings, he conjectured that sending a\n$k$-scheme to its \\'{e}tale topos defines a fully faithful functor from the\nlocalization of the category of finite type $k$-schemes at the universal\nhomeomorphisms to a category of topoi. We prove Grothendieck's conjecture for\ninfinite fields of arbitrary characteristic. In characteristic $0$, this shows\nthat seminormal finite type $k$-schemes can be reconstructed from their\n\\'{e}tale topoi, generalizing work of Voevodsky. In positive characteristic,\nthis shows that perfections of finite type $k$-schemes can be reconstructed\nfrom their \\'{e}tale topoi.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"361 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $k$ be a field that is finitely generated over its prime field. In Grothendieck's anabelian letter to Faltings, he conjectured that sending a $k$-scheme to its \'{e}tale topos defines a fully faithful functor from the localization of the category of finite type $k$-schemes at the universal homeomorphisms to a category of topoi. We prove Grothendieck's conjecture for infinite fields of arbitrary characteristic. In characteristic $0$, this shows that seminormal finite type $k$-schemes can be reconstructed from their \'{e}tale topoi, generalizing work of Voevodsky. In positive characteristic, this shows that perfections of finite type $k$-schemes can be reconstructed from their \'{e}tale topoi.
从图式拓扑重建方案
让 $k$ 是一个在其素数域上有限生成的域。在格罗登第克给法尔廷斯的一封无名信中,他猜想把$k$方案送到它的(\'{e}tale)拓扑中,就定义了一个从有限类型$k$方案范畴在普遍同构处的定位到拓扑范畴的完全忠实的函子。我们证明了格罗登第克对任意特征无限域的猜想。在特征$0$中,我们证明了半正态有限类型$k$结构可以从它们的'{e}tale拓扑中重构出来,这是对Voevodsky工作的推广。在正特征中,这表明有限类型$k$计划的完美性可以从它们的\'{e}tale拓扑中重构出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信