Global Well-Posedness and Long-Time Asymptotics of a General Nonlinear Non-local Burgers Equation

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Jin Tan, Francois Vigneron
{"title":"Global Well-Posedness and Long-Time Asymptotics of a General Nonlinear Non-local Burgers Equation","authors":"Jin Tan,&nbsp;Francois Vigneron","doi":"10.1007/s10440-024-00672-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with the study of a nonlinear non-local equation that has a commutator structure. The equation reads </p><div><div><span>$$ \\partial _{t} u-F(u) \\, (-\\Delta )^{s/{2}} u+(-\\Delta )^{s/{2}} (uF(u))=0, \\quad x\\in \\mathbb{T}^{d}, $$</span></div></div><p> with <span>\\(s\\in (0, 1]\\)</span>. We are interested in solutions stemming from periodic <i>positive</i> bounded initial data. The given function <span>\\(F\\in \\mathcal{C}^{\\infty }(\\mathbb{R}^{+})\\)</span> must satisfy <span>\\(F'&gt;0\\)</span> a.e. on <span>\\((0, +\\infty )\\)</span>. For instance, all the functions <span>\\(F(u)=u^{n}\\)</span> with <span>\\(n\\in \\mathbb{N}^{\\ast }\\)</span> are admissible non-linearities. The local theory can also be developed on the whole space, however the most complete well-posedness result requires the periodic setting. We construct global classical solutions starting from smooth positive data, and global weak solutions starting from positive data in <span>\\(L^{\\infty }\\)</span>. We show that any weak solution is instantaneously regularized into <span>\\(\\mathcal{C}^{\\infty }\\)</span>. We also describe the long-time asymptotics of all solutions. Our methods follow several recent advances in the regularity theory of parabolic integro-differential equations, in particular (Ann. Fac. Sci. Toulouse, Math. 25(4):723–758, 2016; Ann. Fac. Sci. Toulouse, Math. 27(4):667–677, 2018).</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"192 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00672-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the study of a nonlinear non-local equation that has a commutator structure. The equation reads

$$ \partial _{t} u-F(u) \, (-\Delta )^{s/{2}} u+(-\Delta )^{s/{2}} (uF(u))=0, \quad x\in \mathbb{T}^{d}, $$

with \(s\in (0, 1]\). We are interested in solutions stemming from periodic positive bounded initial data. The given function \(F\in \mathcal{C}^{\infty }(\mathbb{R}^{+})\) must satisfy \(F'>0\) a.e. on \((0, +\infty )\). For instance, all the functions \(F(u)=u^{n}\) with \(n\in \mathbb{N}^{\ast }\) are admissible non-linearities. The local theory can also be developed on the whole space, however the most complete well-posedness result requires the periodic setting. We construct global classical solutions starting from smooth positive data, and global weak solutions starting from positive data in \(L^{\infty }\). We show that any weak solution is instantaneously regularized into \(\mathcal{C}^{\infty }\). We also describe the long-time asymptotics of all solutions. Our methods follow several recent advances in the regularity theory of parabolic integro-differential equations, in particular (Ann. Fac. Sci. Toulouse, Math. 25(4):723–758, 2016; Ann. Fac. Sci. Toulouse, Math. 27(4):667–677, 2018).

一般非线性非局部布尔格斯方程的全局拟合性和长期渐近性
本文主要研究一个具有换元结构的非线性非局部方程。方程为 $$ \partial _{t} u-F(u) \, (-\Delta )^{s/{2}} u+(-\Delta )^{s/{2}}(uF(u))=0, \quad x\in \mathbb{T}^{d}, $$$ with \(s\in (0, 1]\).我们感兴趣的是源自周期性正约束初始数据的解。给定函数 \(F\in \mathcal{C}^{\infty }(\mathbb{R}^{+})\) 必须满足 \(F'>0\) a.e. on \((0, +\infty )\).例如,所有具有(n\in \mathbb{N}^{\ast }\) 的函数 \(F(u)=u^{n}\) 都是可允许的非线性。局部理论也可以在整个空间上展开,然而最完整的好求解结果需要周期设置。我们在 \(L^{\infty }\) 中构建了从光滑正数据出发的全局经典解,以及从正数据出发的全局弱解。我们证明,任何弱解都会被瞬时正则化到 \(\mathcal{C}^{\infty }\) 中。我们还描述了所有解的长期渐近性。我们的方法遵循了抛物整微分方程正则性理论的最新进展,特别是 (Ann. Fac.Fac.Soci.25(4):723-758, 2016; Ann.Fac.Sci.27(4):667-677, 2018).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信