Mean-field approximation for networks with synchrony-driven adaptive coupling

Niamh Fennelly, Alannah Neff, Renaud Lambiotte, Andrew Keane, Áine Byrne
{"title":"Mean-field approximation for networks with synchrony-driven adaptive coupling","authors":"Niamh Fennelly, Alannah Neff, Renaud Lambiotte, Andrew Keane, Áine Byrne","doi":"arxiv-2407.21393","DOIUrl":null,"url":null,"abstract":"Synaptic plasticity is a key component of neuronal dynamics, describing the\nprocess by which the connections between neurons change in response to\nexperiences. In this study, we extend a network model of $\\theta$-neuron\noscillators to include a realistic form of adaptive plasticity. In place of the\nless tractable spike-timing-dependent plasticity, we employ recently validated\nphase-difference-dependent plasticity rules, which adjust coupling strengths\nbased on the relative phases of $\\theta$-neuron oscillators. We investigate two\napproaches for implementing this plasticity: pairwise coupling strength updates\nand global coupling strength updates. A mean-field approximation of the system\nis derived and we investigate its validity through comparison with the\n$\\theta$-neuron simulations across various stability states. The synchrony of\nthe system is examined using the Kuramoto order parameter. A bifurcation\nanalysis, by means of numerical continuation and the calculation of maximal\nLyapunov exponents, reveals interesting phenomena, including bistability and\nevidence of period-doubling and boundary crisis routes to chaos, that would\notherwise not exist in the absence of adaptive coupling.","PeriodicalId":501517,"journal":{"name":"arXiv - QuanBio - Neurons and Cognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Synaptic plasticity is a key component of neuronal dynamics, describing the process by which the connections between neurons change in response to experiences. In this study, we extend a network model of $\theta$-neuron oscillators to include a realistic form of adaptive plasticity. In place of the less tractable spike-timing-dependent plasticity, we employ recently validated phase-difference-dependent plasticity rules, which adjust coupling strengths based on the relative phases of $\theta$-neuron oscillators. We investigate two approaches for implementing this plasticity: pairwise coupling strength updates and global coupling strength updates. A mean-field approximation of the system is derived and we investigate its validity through comparison with the $\theta$-neuron simulations across various stability states. The synchrony of the system is examined using the Kuramoto order parameter. A bifurcation analysis, by means of numerical continuation and the calculation of maximal Lyapunov exponents, reveals interesting phenomena, including bistability and evidence of period-doubling and boundary crisis routes to chaos, that would otherwise not exist in the absence of adaptive coupling.
同步驱动自适应耦合网络的平均场近似值
突触可塑性是神经元动力学的一个关键组成部分,它描述了神经元之间的连接因经验而改变的过程。在这项研究中,我们扩展了$theta$-神经元振荡器的网络模型,使其包含了一种现实的自适应可塑性形式。我们采用了最近得到验证的相位差依赖可塑性规则来代替不那么容易理解的尖峰计时依赖可塑性,这种规则根据$theta$-神经元振荡器的相对相位来调整耦合强度。我们研究了实现这种可塑性的两种方法:成对耦合强度更新和全局耦合强度更新。我们得出了系统的均场近似值,并通过与不同稳定状态下的(theta)神经元模拟进行比较,研究了其有效性。我们使用仓本阶参数检验了系统的同步性。通过数值延续和计算最大李雅普诺夫指数进行的分岔分析揭示了一些有趣的现象,包括双稳态性和周期加倍的证据以及通向混沌的边界危机路径,如果没有自适应耦合,这些现象是不会存在的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信